I MPORTANT PR OBLEMS IN PHYSICS FOR SSC MARCH - 2016

1. What would be the final temperature of a mixture of 50 g of water at $20^{\circ} \mathrm{C}$ temperature and 50 g of water at $40^{\circ} \mathrm{C}$ temperature?
A.

Mass $\left(m_{1}\right)=50 \mathrm{gm}$
Temperature $\left(\mathrm{T}_{1}\right)=20^{\circ} \mathrm{C}$
Mass $\left(\mathrm{m}_{2}\right)=50 \mathrm{gm}$
Temperature $\left(\mathrm{T}_{2}\right)=40^{\circ} \mathrm{C}$
Final temperature as per Method of mixtures

$$
\begin{aligned}
(\mathrm{T}) & =\frac{m_{1} T_{1}+m_{2} T_{2}}{m_{1}+m_{2}}=\frac{50 \times 20+50 \times 40}{50+50}=\frac{1000+2000}{100} \\
& =\frac{3000}{100} \quad=30^{\circ} \mathrm{C}
\end{aligned}
$$

2. Answer these.

a) How much energy is transferred when 1 gm of boiling water at $100^{\circ} \mathrm{C}$ condenses to water a $100^{\circ} \mathrm{C}$?
b) How much energy is transferred when 1 gm of boiling water at $100^{\circ} \mathrm{C}$ cools to water at $0^{\circ} \mathrm{C}$?
c) How much energy is released or absorbed when 1 gm of water at $0^{\circ} \mathrm{C}$ freezes to ice at $0^{\circ} \mathrm{C}$?
d) How much energy is released or absorbed when 1 gm of steam at $100^{\circ} \mathrm{C}$ turns to ice at $0^{\circ} \mathrm{C}$?
A. a) 1 gm of boiling water at $100^{\circ} \mathrm{C}$ condenses to water at $100^{\circ} \mathrm{C}$.
Heat transferred $\left(Q_{1}\right)=m L$

$$
=1 \times 540=540 \mathrm{cal}
$$

The latent heat of vaporization of water is $(\mathrm{L})=540 \mathrm{cal} / \mathrm{gm}$.
b) 1 gm of boiling water at $100^{\circ} \mathrm{C}$ cools to water at $0^{\circ} \mathrm{C}$.
Heat transferred $\left(\mathrm{Q}_{2}\right)=$ m.s. $\Delta \mathrm{T}$

$$
=1 \times 1 \times 100=100 \mathrm{cal}
$$

c) 1 gm of water at $0^{\circ} \mathrm{C}$ freezes to ice at $0^{\circ} \mathrm{C}$.

Heat transferred $\left(Q_{3}\right)=m L$

$$
\text { = } 1 \times 80=80 \mathrm{cal}
$$

The latent heat of fusion of ice is

$$
(\mathrm{L})=80 \mathrm{cal} / \mathrm{gm} .
$$

d) 1 gm of steam at $100^{\circ} \mathrm{C}$ turns to ice at $0^{\circ} \mathrm{C}$.

Heat transferred $(Q)=Q_{1}+Q_{2}+Q_{3}$

$$
\begin{aligned}
& =540+100+80 \\
& =720 \mathrm{cal}
\end{aligned}
$$

3. Convert $20^{\circ} \mathrm{C}$ into Kelvin scale.
A. $t^{\circ} \mathrm{C}$
$=(\mathrm{t}+273) \mathrm{K}$
$20^{\circ} \mathrm{C}$

$$
=(20+273) \mathrm{K}=293 \mathrm{~K}
$$

4. Find the distance of the image when an object is placed on the principal axis at a distance of 10 cm in front of a concave mirror whose radius of curvature is 8 cm .
A. Distance of the object $(\mathrm{u})=-10 \mathrm{~cm}$

Radius of curvature $(R)=-8 \mathrm{~cm}$
Focal length (f) $=\frac{R}{2}=-\frac{8}{2}=-4 \mathrm{~cm}$
Distance of the image (v) $=$?
Formula : $\frac{1}{u}+\frac{1}{v}=\frac{1}{f}$
$\frac{1}{v}=\frac{1}{f}-\frac{1}{u}=\frac{1}{-4}-\frac{1}{-10}=\frac{-10+4}{40}=\frac{-3}{20}$
$v=\frac{-20}{3}=-6.6 \mathrm{~cm}$ (on the object side)
5. A convex mirror with a radius of curvature of 3 m is used as rear view in an automobile. If a bus is located at 5 m from this mirror, find the position, nature and size of the image.
A. (for convex mirror u taken with negative sign)

Distance of the object $(\mathrm{u})=-5 \mathrm{~m}$
Radius of curvature (R) $=3 \mathrm{~m}$
Focal length (f) $=\frac{R}{2}=\frac{3}{2}=1.5 \mathrm{~m}$
Distance of the image $(\mathrm{v})=$?

$$
\begin{aligned}
& \text { Formula }: \frac{1}{u}+\frac{1}{v}=\frac{1}{f} \\
& \frac{1}{v}=\frac{1}{f}-\frac{1}{u}=\frac{1}{1.5}-\frac{1}{-5}=\frac{2}{3}+\frac{1}{5}=\frac{10+3}{15}=\frac{13}{15} \\
& v=\frac{15}{13}=1.15 \mathrm{~m}
\end{aligned}
$$

Image formed behind the mirror and it is virtual, erect, diminished.
6. An object is placed at a distance of 10 cm a convex mirror of focal length 15 cm .
Find the position and nature of the image.
A. (for convex mirror u taken with negative sign)

Distance of the object (u) $=-10 \mathrm{~cm}$
Focal length (f) $=15 \mathrm{~cm}$
Radius of curvature $(\mathrm{R})=2 \mathrm{f}=30 \mathrm{~cm}$
Distance of the image $(\mathrm{v})=$?

$$
\begin{aligned}
& \text { Formula }: \frac{1}{u}+\frac{1}{v}=\frac{1}{f} \\
& \frac{1}{v}=\frac{1}{f}-\frac{1}{u}=\frac{1}{15}-\frac{1}{-10}=\frac{10+15}{150}=\frac{25}{150} \\
& v=\frac{150}{25}=6 \mathrm{~cm}
\end{aligned}
$$

Image formed behind the mirror and it is virtual, erect, diminished.
7. The speed of the light in a diamond is $1,24,000 \mathrm{~km} / \mathrm{s}$. Find the refractive index of diamond if the speed of light in air is $3,00,000 \mathrm{~km} / \mathrm{s}$.
A. Speed of light in air $\left(\mathrm{v}_{1}\right)=300000 \mathrm{~km} / \mathrm{s}$ Speed of light in diamond $\left(v_{2}\right)=124000 \mathrm{~km} / \mathrm{s}$ Refractive index of diamond $=\frac{v_{1}}{v_{2}}$

$$
=\frac{300000}{124000}=2.42
$$

8. Refractive index of glass relative to water is $9 / 8$. What is the refractive index of water relative to glass?
A. Refractive index of glass relative to water is

$$
\mathrm{n}_{\mathrm{gw}}=\frac{n_{g}}{n_{w}}=\frac{9}{8}
$$

Refractive index of water relative to glass is

$$
\mathrm{n}_{\mathrm{wg}}=\frac{n_{w}}{n_{g}}=\frac{8}{9}
$$

9. The absolute refractive index of water is $4 / 3$. What is the critical angle?
A. Absolute refractive index of water $(\mathrm{n})=\frac{4}{3}$ Critical angle (c) = ?
$\operatorname{Sin} C=\frac{1}{n}$
$\operatorname{Sin} C=\frac{3}{4}=0.75=\operatorname{Sin} 48^{\circ} 36^{\prime}$
$\rightarrow C=48^{\circ} 36^{\prime}$
10. Determine the refractive index of benzene if the critical angle is 42°.
A. Refractive index of Benzene (n) = ?

$$
\text { Critical angle }(\mathrm{c})=42^{\circ}
$$

$\operatorname{Sin} C=\frac{1}{n}$

$$
\mathrm{n}=\frac{1}{\sin \mathrm{C}}=\frac{1}{\sin 42}=\frac{1}{0.6691}=1.4945
$$

11. A light ray is incident on air-liquid interface at 45° and is refracted at 30°. What is the refractive index of the liquid?
A. Case(i): angle of incidence (i) $=45^{\circ}$ angle of refraction $(\mathrm{r})=30^{\circ}$
Refractive index $(\mathrm{n})=\frac{\operatorname{Sin} i}{\operatorname{Sin} r}$

$$
\begin{aligned}
& =\frac{\sin 45}{\sin 30}=\frac{\frac{1}{\sqrt{2}}}{\frac{1}{2}} \\
& =\frac{2}{\sqrt{2}}=\sqrt{2} \\
& =1.414
\end{aligned}
$$

12. The focal length of a converging lens is 20 cm . An object is 60 cm from the lens.
Where will the image be formed and what kind of image is it?
A. Converging lens means convex lens.

For convex lens 'u' taken as negative.
Focal length (f$)=20 \mathrm{~cm}$
Object distance $(u)=-60 \mathrm{~cm}$
Image distance (v) = ?
Lens formula : $\frac{1}{f}=\frac{1}{v}-\frac{1}{u}$
$\rightarrow \frac{1}{v}=\frac{1}{f}+\frac{1}{u}=\frac{1}{20}+\frac{1}{-60}=\frac{1}{20}-\frac{1}{60}=\frac{60-20}{20 \times 60}=\frac{40}{1200}$
$\rightarrow \frac{1}{v}=\frac{1}{30} \rightarrow \mathrm{v}=30 \mathrm{~cm}$
Here Object is placed beyond C . So image is formed between F and C. It is real, inverted and diminished.
13. Find the refractive index of the glass which is a symmetrical convergent lens if its focal length is equal to the radius of curvature of its surface.
A. For symmetrical convergent lens $R_{1}=R_{2}=R$ Focal length of lens $(\mathrm{f})=\mathrm{R}$ Lens maker's formula : $\frac{1}{f}=(\mathrm{n}-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$ for double convex lens
R_{1} is positive and R_{2} is negative.

$$
\begin{aligned}
& \rightarrow \frac{1}{f}=(\mathrm{n}-1)\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right) \\
& \rightarrow \frac{1}{R}=(\mathrm{n}-1)\left(\frac{1}{R}+\frac{1}{R}\right) \\
& \rightarrow \frac{1}{R}=(\mathrm{n}-1)\left(\frac{2}{R}\right) \\
& \rightarrow 1=2 \mathrm{n}-2 \rightarrow 2 \mathrm{n}=3 \rightarrow \mathrm{n}=\frac{3}{2}=1.5
\end{aligned}
$$

Refractive index of lens (n) $=1.5$
14. Find the radii of curvature of a convexo - concave convergent lens made of glass with refractive index $n=1.5$ having focal length of 24 cm . One of the radii of curvature is double the other.
A. Let the centre of curvatures of convexo-concave lens are R_{1} and R_{2}

$$
\text { Given that } \quad R_{2}=2 R_{1}
$$

Focal length of lens (f) $=24 \mathrm{~cm}$
Refractive index of the lens $(n)=1.5$
Lens maker's formula : $\frac{1}{f}=(\mathrm{n}-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$ for convexo-concave lens
R_{1} is positive and R_{2} is positive.

$$
\begin{aligned}
& \rightarrow \frac{1}{f}=(\mathrm{n}-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \\
& \rightarrow \frac{1}{24}=(1.5-1)\left(\frac{1}{R_{1}}-\frac{1}{2 R_{1}}\right) \\
& \rightarrow \frac{1}{24}=(0.5)\left(\frac{2-1}{2 R_{1}}\right) \\
& \rightarrow 2 \mathrm{R}_{1}=12 \rightarrow \mathrm{R}_{1}=6 \mathrm{~cm} \\
& \quad \mathrm{R}_{2}=2 \mathrm{R}_{1}=12 \mathrm{~cm}
\end{aligned}
$$

Radii of curvatures are $R_{1}=6 \mathrm{~cm}, R_{2}=12 \mathrm{~cm}$
15. Doctor advised Ramu to use 2D lens. What is the focal length of the lens?
A. Power of lens $(P)=2 D$

Formula : $\mathrm{P}=\frac{100}{f(\text { in cms })}$

$$
\mathrm{f}=\frac{100}{P}=\frac{100}{2}=50 \mathrm{~cm}
$$

Focal length of the lens $=50 \mathrm{~cm}$.
16. Two bulbs have ratings $100 \mathrm{~W}, 220 \mathrm{~V}$ and 60W, 220V. Which one has the greater resistance?
A. Power of electricity: $\mathrm{P}=\frac{V^{2}}{R} \rightarrow \mathrm{R}=\frac{V^{2}}{P}$ Case(i) For first bulb

$$
\begin{aligned}
\mathrm{P} & =100 \mathrm{~W} \\
\mathrm{~V} & =220 \mathrm{~V} \\
\mathrm{R} & =\frac{V^{2}}{P} \\
& =\frac{220 \times 220}{100} \\
& =484 \Omega
\end{aligned}
$$

Case(ii) For second bulb $P=60 \mathrm{~W}$

$$
\begin{aligned}
\mathrm{V} & =220 \mathrm{~V} \\
\mathrm{R} & =\frac{V^{2}}{P} \\
& =\frac{220 \times 220}{60} \\
& =806.66 \Omega
\end{aligned}
$$

Second bulb has greater resistance.
17. In the given figure, the potential at A is When the potential at B is zero.

A. Potential difference is divided between $A \& B$

$$
\begin{aligned}
& \underbrace{\rightarrow-\underbrace{1 A}_{C}}_{A^{\circ}} \underbrace{2 V}_{B} \\
& V_{B A}=V_{B C}+V_{C A} \\
& \mathrm{~V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}=+2+(1 \times 5) \\
& V_{A}-0=2+5 \\
& \mathrm{~V}_{\mathrm{A}}=7 \mathrm{~V}
\end{aligned}
$$

18. Observe the circuit and answer the questions given below.

i) Are resistors 3 and 4 in series?
ii) Are resistors 1 and 2 in series?
iii) Is the battery in series with any resistor?
iv) What is the potential drop across the resistor 3?
v) What is the total emf in the circuit if the
A. (i) Resistors 3 and 4 are in series.
(ii) Resistors 1 and 2 are in series.
(iii) Yes
(iv) As resistor 2 connected parallel to 3 and 4 $V_{2}=V_{3}+V_{4} \rightarrow 14=V_{3}+8 \rightarrow V_{3}=6 \mathrm{~V}$
(v) Given $\mathrm{V}_{1}=6 \mathrm{~V}$

As battery connected in series to 1 and 2
$\mathrm{V}_{\mathrm{B}}=\mathrm{V}_{1}+\mathrm{V}_{2}=6+14=20 \mathrm{~V}$
19. If the resistance of your body is 100000』, what would be the current that flows in your body when you touch the terminals of a 12 V battery?
A.

Resistance (R) $=100000 \Omega$
Potential of the battery $(\mathrm{V})=12 \mathrm{~V}$
Ohm's law: $\mathrm{V}=\mathrm{IR}$

$$
I=\frac{V}{R}=\frac{12}{100000}=12 \times 10^{-5} \mathrm{~A}
$$

The flow of current
through the body is 12×10^{-5} Ampere
20. A house has 3 tube lights, two fans and a television. Each tube light draws 40W. The fan draws 80 W and the television draws 60W. On the average, all the tube lights are kept on for five hours, two fans for 12 hours and television for five hours every day. Find the cost of electric energy used in 30 days at the rate of Rs. 3.00 per KWH.
A. Energy consumed in a day =
$\underline{\text { Wattage } X \text { Number of devices } X \text { usage hours per day }}$

1000				
$\stackrel{\text { Ù }}{\stackrel{\text { O}}{\partial}}$				Consumed energy in KWH
Tube light	40	3	5	$\frac{40 \times 3 \times 5}{1000}=0.6$
Fan	80	2	12	$\frac{80 \times 2 \times 12}{1000}=1.92$
TV	60	1	5	$\frac{60 \times 1 \times 5}{1000}=0.3$

Energy consumed in a day $=0.6+1.92+0.3$

$$
=2.82 \mathrm{KWH}
$$

Energy consumed in 30 days $=30 \times 2.82$
= 84.6 KWH

Rate of current for $1 \mathrm{KWH}=$ Rs. 3-00
Total cost (Current bill) $=84.6 \times 3-00$
= Rs. 253-80

[^0]21. An unknown circuit draws a current of 2A from a 12 V battery then find its equivalent resistance.
A. Flow of current $(\mathrm{I})=2 \mathrm{~A}$

Voltage of battery $(\mathrm{V})=12 \mathrm{~V}$
Ohm's law: $\quad V=I R$

$$
\mathrm{R}=\frac{V}{I}=\frac{12}{2}=6 \Omega
$$

Resistance (R) $=6 \Omega$
22. Three resistors of values $2 \Omega, 4 \Omega, 6 \Omega$ are connected in series then find the equivalent resistance of that combination.
A. $R_{1}=2 \Omega, R_{2}=4 \Omega, R_{3}=6 \Omega$

Let the resultant resistance in series combination is R.
$R=R_{1}+R_{2}+R_{3}=2+4+6=12 \Omega$
23. Three resistors of values $2 \Omega, 4 \Omega, 6 \Omega$ are connected in parallel then find the equivalent resistance of that combination.
A. $R_{1}=2 \Omega, R_{2}=4 \Omega, R_{3}=6 \Omega$

Let the resultant resistance in series combination is R

$$
\begin{gathered}
\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}} \\
\frac{1}{R}=\frac{1}{2}+\frac{1}{4}+\frac{1}{6} \\
\frac{1}{R}=\frac{6+3+2}{12} \\
\frac{1}{R}=\frac{11}{12} \\
\mathrm{R}=\frac{12}{11}=1.09 \Omega
\end{gathered}
$$

24. The value of magnetic field induction which is uniform is 2 T . What is the flux passing through a surface of area $1.5 \mathrm{~m}^{2}$ perpendicular to the field?
A. Magnetic field induction $B=2 T$

$$
\text { Surface area } A=1.5 \mathrm{~m}^{2}
$$

Magnetic flux $\Phi=$?
Formula: $\mathrm{B}=\frac{\varnothing}{A} \rightarrow \varnothing=\mathrm{BA}=2 \times 1.5=3$ Weber
25. An 8 N force acts on a rectangular conductor 20 cm long placed perpendicular to a magnetic field. Determine the magnetic field induction if the current in the conductor is 40A.?
A. Force on conductor $(F)=8 \mathrm{~N}$

Length of conductor $(l)=20 \mathrm{~cm}=20 \times 10^{-2} \mathrm{~m}$
Current in the conductor (i) $=40 \mathrm{~A}$
Magnetic field induction $(\mathrm{B})=$?
Formula: $\mathrm{F}=\mathrm{Bi} l$
$\mathrm{B}=\frac{F}{i l}=\frac{8}{40 \times 20 \times 10^{-2}}=\frac{8 \times 10^{2}}{800}=\frac{800}{800}=1$ Tesla

[^0]: NAGA MURTHY-9441786635
 Contact at: nagamurthysir@gmail.com Visit at: nagamurthy.weebly.com

