CLASS-10 PHYSICAL SCIENCES NEW TEXT BOOK
 2014-2015

CHAPTER: 05 - REFRACTION OF LIGHT AT PLANE SURFACES

PERIOD PLAN-04: Refraction - Snell's law

Content Analysis	Class Room Environment	Teaching Learning Material
Refraction - Snell's law: Imagine that a person has fallen out of boat at point B. The line marked through point ' X ' is the shore line. We are at a point ' A '. To save the person we need to travel certain distance on land and certain distance in water. we can run faster on land than we can swim in water. We have to travel a greater distance on the land. For any speeds, One has to follow to reach the person is ACB, and that this path takes the shortest time. If we take any other route, it will be longer. Let us consider a point ' D ' on shore line which is very close to point ' C ' such that there is essentially no change in time between path ACB and ADB. First look at the paths on the land as, If we draw a perpendicular DE; between two paths at D, we see that the path (AD) on land is shortened by the amount EC. On the other hand, in the water, by drawing a corresponding perpendicular CF we find that we have to go the extra distance DF in water. In other words, we gain a time that is equal to go through distance EC on land but we lose the time that is equal to go extra distance DF in water. These times must be equal since we assumed there no change in time between the two paths. Let the time taken to travel from E to C and D to F be ' t ' and v_{1} and v_{2} be the speeds of running and swimming. $E C=v_{1} \Delta t$ and $D F=v_{2} \Delta t$ EC / DF = $\mathrm{v}_{1} / \mathrm{v}_{2}$ Let i and r be the angles measured between the path ACB and normal NN , perpendicular to shore line X . $\sin \mathrm{i}=\mathrm{EC} / \mathrm{DC}$ and $\sin \mathrm{r}=\mathrm{DF} / \mathrm{DC}$ Therefore, $\sin \mathrm{i} / \sin \mathrm{r}=\mathrm{EC} / \mathrm{DF}$ $\sin \mathrm{i} / \sin \mathrm{r}=\mathrm{v}_{1} / \mathrm{v}_{2}$ We used the principle of least time to derive the above result. Apply the same for the light ray also. $\sin \mathrm{i} / \sin \mathrm{r}=\mathrm{n}_{2} / \mathrm{n}_{1}$ $\mathrm{n}_{1} \sin \mathrm{i}=\mathrm{n}_{2} \sin \mathrm{r}$. This is called Snell's law. From the above discussion we can conclude that when light travels from one medium to another, the ratio of speeds v_{1} / v_{2} is equal to n_{2} / n_{1}.	Conversation: About derivation of snell's law Explanation: derivation of snell's law.	Chart
Following are the laws of refraction: 1. The incident ray, the refracted ray and the normal to interface of two transparent media at the point of incidence all lie in the same plane. 2. During refraction, light follows Snell's law $\mathrm{n}_{1} \sin \mathrm{i}=\mathrm{n}_{2} \sin \mathrm{r}$ (or) $\sin \mathrm{i} / \sin \mathrm{r}=$ constant.	Conversation: About laws of refraction.	

Prepared by : V.NAGA MURTHY- 9441786635
Contact at: nagamurthysir@ gmail.com
Visit at: nagamurthy.weebly.com

