CLASS-10 PHYSICAL SCIENCES NEW TEXT BOOK
 2014-2015

CHAPTER: 05 - REFRACTION OF LIGHT AT PLANE SURFACES

PERIOD PLAN-02: Refractive index

Refractive indexes of some material media
Affecting factors of refractive index
Relative refractive index

Content Analysis	Class Room Environment				Teaching Learning Material
Refractive index: Light travels in vacuum with a speed nearly equal to $\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$. The speed of light is smaller than ' c ' in other transparent media. Let ' v ' be the speed of light in a certain medium. Absolute refractive index $=$ Speed of light in vacuum/ Speed of light in medium. $\mathrm{n}=\mathrm{c} / \mathrm{v}$ The refractive index ' n ' means that the speed of light in that medium is nth part of speed of light in vacuum. For example the refractive index of glass is $3 / 2$.Then the speed of light in glass is $(2 / 3)$ of $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ equal to $2 \times 10^{8} \mathrm{~m} / \mathrm{s}$.	Conversation: About refractive index of a medium. Explanation: About the velocity of light in different mediums.				chart
Refractive indexes of some material media: An optically denser medium may not possess greater mass density. For example, kerosene with high refractive index is optically denser than water although its mass density is less than water.	Explanation some materia	About 1.003 1.31 1.33 1.44 1.46 1.47 1.52 1.50	he refractive ind Canada balsam Rock salt CS_{2} Dense flint glass Ruby Sapphire Diamond	les of 1.53 1.54 1.63 1.65 1.71 1.77 2.42	Chart
Affecting factors of refractive index: Refractive index depends on the following factors. (1) nature of material (2) wavelength of light used.	Conversation: About the affecting factors of refractive index.				
Relative refractive index: The refractive index of a medium with respect to another medium is defined as the ratio of speed of light in the first medium to the speed of light in the second medium. Let v_{1} and v_{2} be the speeds of light in the first and second media respectively. Then, Refractive index of second medium with respect to first medium is given by $\begin{aligned} & \mathrm{n}_{21}=\frac{\text { speed of light in first medium }}{\text { speed of light in second medium }} \\ & \mathrm{n}_{21}=\frac{v_{1}}{v_{2}}=\frac{n_{2}}{n_{1}} \end{aligned}$	Conversation: About the refraction according				Chart

Prepared by : V.NAGA MURTHY. 9441786635
Contact at: nagamurthysir@ gmail.com
Visit at: nagamurthy.weebly.com

