CLASS-10

PHYSICAL SCIENCE PERIOD PLANS

CHAPTER: 02 – CHEMICAL REACTIONS AND EQUATIONS

PERIOD PLAN-03:

Making chemical equation more informative

Physical state, temperature difference, releasing gas

Interpretation a balanced chemical equation

Chemical equations – calculations – problems

Content Analysis	Class Room Environment	Teaching Learning Material
Making chemical equation more informative:(1) Expressing physical state: The physical state of the substance may be mentioned along with the chemical formula. Solids – (s), liquids – (l), gases – (g), precipitates – (l), aqueous solutions – (aq). Making chemical equation more informative:(2) Expressing temperature difference: In a	Conversation: how to show physical states of substances in a chemical reaction. 1) Fe ₂ O ₃ (s) + 2Al (s) → 2Fe (s) + Al ₂ O ₃ (s) Δ 2) 2H ₂ (g) + O ₂ (g) → 2H ₂ O (¹) 3) H ₂ SO ₄ (aq) + 2NaOH (aq)→Na ₂ SO ₄ (aq) + 2H ₂ O Conversation: how can we differ the chemical reaction in which heat is evolved or absorbed.	Chart
chemical reaction if heat is liberated, it is called exothermic reaction. And if heat is gained, it is called endothermic reaction. Heat is represented with Q.	$C(s) + O_2(g) \rightarrow CO_2(g) + Q$ (exothermic reaction) $N_2(g) + O_2(g) \rightarrow 2NO(g) - Q$ (endothermic reaction)	
Making chemical equation more informative:(3) Expressing the gas evolved: If a gas is evolved in a chemical reaction, it is denoted with an upward arrow mark (♠) or (g)	$ \begin{array}{ccc} Zn & (s) & + \ 2HCl \ (^{\downarrow}) & \rightarrow & ZnCl_2 \ (^{\downarrow}) + \ H_2 \ (^{\spadesuit}) \\ Zn & (s) & + \ H_2SO_4 \ (aq) & \rightarrow & ZnSO_4 \ (aq) + \ H_2 \ (^{\spadesuit}) \\ \end{array} $	Beaker Dil. HCl Zinc granules
Making chemical equation more informative:(4) Expressing the gas evolved: If a precipitate is formed in a chemical reaction, it is denoted with an downward arrow mark (♥)	$\begin{array}{c} \text{AgNO}_3 \text{ (aq)} + \text{NaCl (aq)} & \rightarrow \text{AgCl } (\clubsuit) + \text{NaNO}_3 \text{(aq)} \\ \text{Na}_2 \text{SO}_4 \text{(aq)} + \text{BaCl}_2 \text{ (aq)} & \rightarrow \text{BaSO}_4 (\clubsuit) + 2\text{NaCl (aq)} \end{array}$	Beaker-2 AgNO ₃ NaCl water
Interpretation a balanced chemical equation: * A chemical reaction represents the reactants and products. * It gives the ratio of molecules of reactants and products. * The relative masses of reactants and products are known from the equation. * If the masses expressed in grams, it gives the molar ratios of reactants and products. * If gases are involved, then we calculate the molar mass and molar volume relations. * Using molar mass and avagadro's number we can calculate the number of atoms and molecules of different substances in equation.	Explanation & Conversation: The information from the chemical equation is explained in different ways. Example: Fe ₂ O ₃ (s) + 2Al(s) → 2Fe(s) + Al ₂ O ₃ (s) 1mol 2mol 2mol 1mol 160U 54U 112U 102U 80U 27U 56U 51U	Chart
Chemical equations – calculations – problems: These are mainly four types. 1) mass-mass relationship 2) mass-volume relationship 3) volume-volume relationship 4) mass-volume-no. of molecules relationship	Conversation: about solving problems. Ex-1: How much quantity of aluminium is used to get 1120Kg of iron? Ex-2: calculate the volume, mass and no.of molecules of hydrogen liberated when 230gm of sodium reacts with excess of water at S.T.P.	

NAGA MURTHY- 9441786635

Contact at: nagamurthysir@gmail.com Visit at: nagamurthy.weebly.com