PRAKASAM DISTRICT COMMON EXAMINATION BOARD
 HALF YEARLY EXAMINATIONS-JANUARY-2016
 GENERAL SCIENCE , Paper - I

(Physical Sciences)
(English Version)

Class-10 - Principles of Evaluation - PART-A

Q.No	Points for Evaluation	Marks allotted	Total Mark
1.	Mass $\left(\mathrm{m}_{1}\right)=50 \mathrm{gm}$ Temperature $\left(\mathrm{T}_{1}\right)=20^{\circ} \mathrm{C}$ Mass $\left(\mathrm{m}_{2}\right)=50 \mathrm{gm}$ Temperature $\left(\mathrm{T}_{2}\right)=40^{\circ} \mathrm{C}$ Final temperature as per Method of mixtures $(\mathrm{T})=\frac{m_{1} T_{1}+m_{2} T_{2}}{m_{1}+m_{2}}$ $=\frac{50 \times 20+50 \times 40}{50+50}$ $=\frac{1000+2000}{100}=\frac{3000}{100} \quad=30^{\circ} \mathrm{C}$	Data Formula Substitute Answer $4 \times \frac{1}{2}$	2
2.	The polish applied on the shoes behaves like a mirror. When light rays fall on the polished shoes, they shines more.	2x1	2
3.	Uses of concave mirror: (i) To get different sizes of images (ii) used in solar appliances. (iii) used by ENT doctors (iv) used in wars in olden days to destroy the ships. (v) used to see celestial bodies. Uses of convex mirror : (i) To get diminished images and at less distance. (ii) used as rear view mirrors. (iii) used in ATM centers to see the back view of operator. (iv) used in telescopes.	Any four points related $4 \times \frac{1}{2}$	2
4.	At camp fire, heat is transformed to the surroundings by convection. Due to this process, the density of surrounding air changes continuously. The refractive index continuously changes slightly. As a result the objects beyond the fire are seen swaying.	$4 \mathrm{x} \frac{1}{2}$	2
5.	The reaction between an acid and a base to produce salt and water is called neutralization . $$	$2 \times \frac{1}{2}$	2
6.	Electronic configuration of copper : $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1} 3 d^{10} \text { (or) } \quad[\operatorname{Ar}] 4 s^{1} 3 d^{10}$ Electronic configuration of chromium : $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1} 3 d^{5} \quad \text { (or) } \quad[\operatorname{Ar}] 4 s^{1} 3 d^{5}$	2x1	2
7.	Sodium can lose one electron and forms sodium ion (cation) to get octet configuration like Neon. Fluorine can gain one electron and forms Fluoride ion (anion) to get octet configuration like Neon.	2x1	2
8.	The force of attraction among atoms in covalent molecule is weak . Electrostatic forces are present among atoms in ionic molecules. So covalent compounds have low melting points	2×1	2
PKM-SA-22015-16 \quadNAGA MURTHY- 9 Contact at : naga Visit at : nagamu		41786635 murthysir@ thy.weebly	$\begin{aligned} & \hline \text { nail.com } \\ & \text { om } \end{aligned}$

9.	Due to evaporation process	*	1
10.	If the light ray incident along the normal drawn to the interface (or) If the refractive indices of two media are equal	Any one point 1x1	1
11.	$\frac{1}{f}=\left(\mathrm{n}_{\mathrm{ba}}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$ (or) $\frac{1}{f}=(\mathrm{n}-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$	1x1	1
12.	He has to take antacid tablet. (or) take Zintac / gelusil / rantac / histac EVT / ENO / Milk of magnesia (or) drink a cup of dilute baking soda (Sodium bicarbonate) solution.	Any related one point 1 x 1	
13.	$\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$	1 x 1	
14.	$n s^{2} \mathrm{np}{ }^{6}$	*	
15.	Specific heat of a solid can be measured by using calorimeter. We need calorimeter, water, hot water, thermometer and solid shots (aluminium and copper shots).	1	
	Procedure:(1) Find the mass of the calorimeter vessel $\left(\mathrm{m}_{1}\right)$. (2) Fill half with water, find the mass of calorimeter with water $\left(\mathrm{m}_{2}\right)$. (3) Measure the initial temperature $\left(\mathrm{T}_{1}{ }^{\circ} \mathrm{C}\right)$. This is the temperature of both water and also calorimeter. (4) Place aluminium shots in hot water. The temperature $\left(\mathrm{T}_{2}{ }^{\circ} \mathrm{C}\right)$. (5) Transfer the aluminium shots into calorimeter quickly (6) Stir the mixture well. (7) Note the final temperature $\left(\mathrm{T}_{3}{ }^{\circ} \mathrm{C}\right)$. (8) Measure the total final mass $\left(\mathrm{m}_{3}\right)$. Heat $(\mathrm{Q})=\mathrm{m} . \mathrm{s} . \Delta \mathrm{T}$	2	
	According to the method of mixtures : Heat lost by the solid $=$ Heat gained by calorimeter + Heat gained by water $\begin{aligned} & \left(\mathrm{m}_{3}-\mathrm{m}_{2}\right) \cdot \mathrm{S}_{\text {alu }} \cdot\left(\mathrm{T}_{2}-\mathrm{T}_{3}\right)=\mathrm{m}_{1} \cdot \mathrm{~S}_{\mathrm{c}} \cdot\left(\mathrm{~T}_{3}-\mathrm{T}_{1}\right)+\left(\mathrm{m}_{2}-\mathrm{m}_{1}\right) \cdot \mathrm{S}_{\mathrm{w} \cdot} \cdot\left(\mathrm{~T}_{3}-\mathrm{T}_{1}\right) \\ & S_{a l u}=\frac{\left[m_{1} S_{c}+\left(m_{2}-m_{1}\right) S_{w}\right]\left[T_{3}-T_{1}\right]}{\left(m_{3}-m_{2}\right)\left(T_{2}-T_{3}\right)} \end{aligned}$ This way we can find the specific heat of a solid. Take $\quad S_{\mathrm{w}}=1 \mathrm{cal} / \mathrm{gm}-{ }^{\circ} \mathrm{C}$ $S_{c}=$ specific heat of the material of calorimeter vessel Similarly we can find the specific heat of copper.		
16.	(A) Phani can give a Bi convex lens to his grand father.	1	4
	(B) Eye lens can form a clear image on the retina when any object is placed beyond near point. To correct the defect of hypermetropia, we need to use a lens which forms an image of an object beyond near point, when the object is between near point (H) and least distance of distinct vision (L).	2	
		1	
PKM-SA-22015-16 \quadNAGA MURTHY- 9 Contact at : naga Visit at : nagamu		41786635	

21.	(i) Atom ' B ' forms negative ion. (ii) Atom ' A ' forms positive ion. (iii) Valency of atom ' A ' is 3. (iv) If ' A ' reacts with ' B ' then $A_{2} B_{3}$ molecule is formed.			4×1	4
22.	S.No	Period	Group	$4 x^{1 / 2}=2$ For reasons 2	4
	Atomic radius	decrease	increase		
	2 Ionisation energy	increase	decrease		
	3 Electron affinity	increase	decrease		
	4 Electro negativity	increase	decrease		
23.	Case(i): When object is placed at C_{2} of a convex lens, the image formed at C_{1}. The image is real, inverted and same size as object. When object is placed at C_{2} of a concave lens, the image is formed at the object side between Focus and optic centre. The image is virtual, erect and diminished. Any one diagram is sufficient $\&$ matter $1+\mathbf{1 1}^{112}=\mathbf{2 1}^{1 / 2}$			$2^{1 / 2}$	5
	Case(ii): When object is placed image is formed at the object side. enlarged. When object is placed between F_{2} of P of a concave lens, the image is formed at the object side between focus and optic centre. The in erect and diminished. Any one diagram is sufficient \& matt	.tween F_{2} The ima age is vir $1+1 \frac{1}{2}=$	nvex lens, the erect and	$2^{1 / 2}$	
24	The gas liberated is carbon dioxi	$\left(\mathrm{CO}_{2}\right)$.		1	5
	Required apparatus : Test tube, CaCO_{3}, one holed rubber cork, Delivery tube, Spirit lamp, Lime water, Stand, beaker			2	
				2	
$\begin{aligned} & \text { PKM-SA-2 } \\ & \text { 2015-16 } \end{aligned}$			NAGA MURTHY-9441786635 Contact at: nagamurthysir@gmail.com Visitat: nagamurthy.weebly.com		

KEY SHEET - PART-B

S. No	Ans.	S. No	Ans.	S. No	Ans.
1	B	11	A	21	Oiling/greasing/paint ing/galvanizing/chro me plating or any related
2	C	12	D	22	acidic
3	D	13	D	23	Germanium (Ge)
4	C	14	D	24	S-S
5	C	15	A	25	1.54
6	C	16	B	26	C
7	B	17	D	27	D
8	C	18	D	28	A
9	B	19	C	29	G
10	*	20	C	30	F

Note: * means allot full marks.

