PRAKASAM DISTRICT COMMON EXAMINATION BOARD HALF YEARLY EXAMINATIONS-JANUARY-2016

GENERAL SCIENCE, Paper – I

(Physical Sciences) (English Version)

Class-10 - Principles of Evaluation - PART-A

Q.No	Points for Evaluation	Marks allotted	Total Marks
1.	Mass $(m_1) = 50 \text{ gm}$ Temperature $(T_1) = 20^{\circ}\text{C}$ Mass $(m_2) = 50 \text{ gm}$ Temperature $(T_2) = 40^{\circ}\text{C}$	Data Formula Substitute	
	Final temperature as per Method of mixtures (T) = $\frac{m_1 T_1 + m_2 T_2}{m_1 + m_2}$ = $\frac{50X20 + 50X40}{50 + 50}$ = $\frac{1000 + 2000}{50}$ = $\frac{3000}{50}$ = 30° C	Answer $4x \frac{1}{2}$	2
2.	The polish applied on the shoes behaves like a mirror.	2x1	2
3.	When light rays fall on the polished shoes, they shines more.Uses of concave mirror : (i) To get different sizes of images(ii) used in solar appliances. (iii) used by ENT doctors(iv) used in wars in olden days to destroy the ships.(v) used to see celestial bodies.Uses of convex mirror :	Any four points related $4x \frac{1}{2}$	2
	(i) To get diminished images and at less distance.(ii) used as rear view mirrors.(iii) used in ATM centers to see the back view of operator.(iv) used in telescopes.		
4.	At camp fire, heat is transformed to the surroundings by convection. Due to this process, the density of surrounding air changes continuously. The refractive index continuously changes slightly. As a result the objects beyond the fire are seen swaying.	$4x\frac{1}{2}$	2
5.	The reaction between an acid and a base to produce salt and water is called neutralization . Acid + Base \rightarrow Salt + Water Ex: HCl + NaOH \rightarrow NaCl + H ₂ O H ₂ SO ₄ + Ca(OH) ₂ \rightarrow CaSO ₄ + 2H ₂ O	$\frac{1}{2x\frac{1}{2}}$	2
6.	Electronic configuration of copper : $1s^2 2s^2 2p^6 3s^2 3p^6 4s^1 3d^{10}$ (or) [Ar] $4s^1 3d^{10}$ Electronic configuration of chromium : $1s^2 2s^2 2p^6 3s^2 3p^6 4s^1 3d^5$ (or) [Ar] $4s^1 3d^5$	2 2x1	2
7.	Sodium can lose one electron and forms sodium ion (cation) to get octe configuration like Neon. Fluorine can gain one electron and forms Fluoride ion (anion) to get octet configuration like Neon.	t 2x1	2
8.	The force of attraction among atoms in covalent molecule is weak . Electrostatic forces are present among atoms in ionic molecules. So covalent compounds have low melting points	2x1	2
PKM-SA 2015-16	2 NAGA MURTHY	gamurthysir@g	

9.	Due to evaporation process	*	1
10.	If the light ray incident along the normal drawn to the interface (or)	Any related	1
	If the refractive indices of two media are equal	one point 1×1	1
11.	$\frac{1}{f} = (n_{ba}-1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right) (\text{or}) \frac{1}{f} = (n-1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)$	1x1	1
12.	He has to take antacid tablet. (or)	Any	
	take Zintac / gelusil / rantac / histac EVT / ENO / Milk of magnesia	related one point	
		11	1
12	drink a cup of dilute baking soda (Sodium bicarbonate) solution.	1x1 1x1	
<u>13.</u> 14.	$\frac{C_{3}H_{8} + 5O_{2} \rightarrow 3CO_{2} + 4H_{2}O}{ns^{2} np^{6}}$	*	1
15.	Specific heat of a solid can be measured by using calorimeter. We		1
	need calorimeter, water, hot water, thermometer and solid shots	1	
	(aluminium and copper shots).		
	Procedure: (1) Find the mass of the calorimeter vessel (m_1) .		
	$\overline{(2)}$ Fill half with water , find the mass of calorimeter with water (m_2) .		
	(3) Measure the initial temperature $(T_1^{\circ}C)$.		
	This is the temperature of both water and also calorimeter.		
	(4) Place aluminium shots in hot water. The temperature $(T_2^{\circ}C)$.		
	(5) Transfer the aluminium shots into calorimeter quickly		
	(6) Stir the mixture well.	2	
	(7) Note the final temperature $(T_3^{\circ}C)$.	_	
	(8) Measure the total final mass (m_3) .		4
	Heat (Q) = $m.s.\Delta T$		
	According to the method of mixtures :		
	Heat lost by the solid =Heat gained by calorimeter + Heat gained by water		
	$(m_3-m_2).S_{alu}.(T_2-T_3) = m_1.S_c.(T_3-T_1) + (m_2-m_1).S_{w}.(T_3-T_1)$		
	$S_{alu} = \frac{[m_1 S_c + (m_2 - m_1) S_w][T_3 - T_1]}{(m_2 - m_2)(T_2 - T_2)}$		
	This way we can find the specific heat of a solid.		
	Take $S_w = 1 \text{ cal/gm} - {}^{\circ}C$		
	$S_w = 1$ calculation S_c = specific heat of the material of calorimeter vessel		
	Similarly we can find the specific heat of copper.		
16.	(A) Phani can give a Bi convex lens to his grand father.	1	
	(B) Eye lens can form a clear image on the retina when any object is		
	placed beyond near point.		
	To correct the defect of hypermetropia, we need to use a lens which	2	
	forms an image of an object beyond near point, when the object is	_	
	between near point (H) and least distance of distinct vision (L).		4
		1	
PKM-S		0441796625	
2015-1			nail.com
	Visit at : nagam	urthy.weebly.c	om

17.					white paper on a drawing		
	board	with the he	elp of clamps. D	raw a straight	t line AB at the centre of		
	the pap	per and a ne	ormal (ON) to A	AB at 'O'. Dra	w a straight line PQ	1	
	making	g certain ar	ngle (\hat{i}) with ON	•			
	Fix tw	o pins at P	and Q on the pa	per vertically	. Observe the images P ¹		
	and Q^{I} of the P and Q, in the mirror kept along the line AB. Fix two more pins R and S such that they are in same line as that of P^{I} and Q^{I} .					1	
	Join R, S and O Measure the angle between RS and ON						4
	(angle	of reflection	on).				
	We find that angle of incidence = angle of reflection.						
		1.1 1.1 1.1				1	
18.	Take a	prism befo	ore a white wall	. Keep a light	source such that the light		
	rays fa	ll on the pr	rism through a n	arrow slit whi	ich was arranged. Adjust	Any related	
	the pri	sm such the	at the colours (VIBGYOR) fa	all on the wall. (OR)	content	
	Take a	metal tray	and fill it with	water. Place a	mirror in water such that		4
	it makes an angle to the water surface. Keep a white card board screen /sheet above the water surface. Now focus white light on the mirror				4	4	
	through water. Try to obtain the colours on the screen. We can see the						
	seven colours (VIBGYOR) of rainbow on the screen.						
	(No need of diagram)						
19.	Oxidation : Adding oxygen is called oxidation. (or) Removing oxygen is oxidation (or) Loss of electrons is oxidation.				1		
					1		
	 Combustion : Burning of a substance in air with oxygen is called combustion. Ex: C + O₂ → CO₂(1) oxidation & combustion 					1	4
						1	·
						1	
	$H_2 + CO_2 \rightarrow H_2O + CO(2)$ oxidation but not combustion						
	We conclude that all oxidation reactions are not combustion reactions. But all combustion reactions must oxidation reactions.					1	
20.	four qu	iantum nur	1		lectron of Lithium are	1	
			n l	$m_1 m_s$		1	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
	(i) Principal quantum number (ii) Azimuthal quantum number (iii) Spin guestum number						
		(iii) Magnetic quantum number (iv) Spin quantum number.					
	PQ	Symbol	Scientist Bohr	represents Shell	Any related matter N values of orbits	Any related	
	PQ	n	DOIII	Shell	K,L, are 1,2,	two points	
	AQ	l	Sommerfeld	Sub shell	l values for s,p, sub		
			201111010		shells are $0,1,\ldots$		
	MQ	ml	Lande	Orbital	values are from $-l$ to		
					+l	1	
	SQ	ms	Uhlen beck	Spin of	$+\frac{1}{2}$ clock wise	For last	
			and smith	electron	- ¹ / ₂ anti clock wise	column	
PKM-S/ 2015-1					NAGA MURTHY- 9 Contact at : <u>naga</u> Visit at : nagamu	murthysir@g	

(ii) Atom 'A' forms positive ion. (iii) Valency of atom 'A' is 3. (iv) If 'A' reacts with 'B' then A_2B_3 molecule is formed. 4×1 22. $S.No$ PeriodGroup increase $4 \times 1/2=2$ For reasons 2 3 Electron affinity increasedecrease decrease $4 \times 1/2=2$ For reasons 2 23. Case(i): When object is placed at C_2 of a convex lens, the image formed at C_1 . The image is real, inverted and same size as object. $4 \times 1/2=2$ For reasons 2When object is placed at C_2 of a concave lens, the image is formed at the object side between Focus and optic centre. The image is virtual, erect and diminished. $2 \frac{1}{2}$ Case(ii): When object is placed between F ₂ of P of a convex lens, the image is formed at the object side. The image is virtual, erect and enlarged. $2 \frac{1}{2}$ When object is placed between F ₂ of P of a concave lens, the image is formed at the object is placed between F ₂ of P of a concave lens, the image is formed at enlarged. $2 \frac{1}{2}$	4
(iii) Value y of a doin 'A' is 5. (iv) If 'A' reacts with 'B' then A_2B_3 molecule is formed. 22. $ \frac{S.No}{1} Atomic radius decrease increase}{2 Ionisation energy increase decrease}{3} decrease decrease} decrease decrease} $ 23. $ \frac{Case(i):}{2} When object is placed at C_2 of a convex lens, the image formed at C_1. The image is real, inverted and same size as object. When object is placed at C_2 of a concave lens, the image is formed at the object side between Focus and optic centre. The image is virtual, erect and diminished. Any one diagram is sufficient & matter 1 + 1\frac{1}{2} = 2\frac{1}{2} \frac{Case(ii):}{C_2 - F_2 - P} When object is placed between F_2 of P of a convex lens, the image is formed at the object side. The image is virtual, erect and enlarged. \frac{2\frac{1}{2} - \frac{1}{2} - $	4
22.S.NoPeriodGroup1Atomic radiusdecreaseincrease2Ionisation energyincreasedecrease3Electron affinityincreasedecrease4Electro negativityincreasedecrease23.Case(i):When object is placed at C2 of a convex lens, the image formed at C1. The image is real, inverted and same size as object.7When object is placed at C2 of a concave lens, the image is formed at the object side between Focus and optic centre. The image is virtual, erect and diminished.2½Case(ii): When object is placed between F2 of P of a convex lens, the image is formed at the object side. The image is virtual, erect and enlarged.2½When object is placed to placed between F2 of P of a convex lens, the image is formed at the object side. The image is virtual, erect and enlarged.2½When object is placed between F2 of P of a convex lens, the image is formed at the object side. The image is virtual, erect and enlarged.2½	
1Atomic radiusdecreaseincrease $4x\sqrt{2}=2$ 2Ionisation energyincreasedecrease $4x\sqrt{2}=2$ 3Electron affinityincreasedecrease $2x\sqrt{2}$ 23.Case(i): When object is placed at C2 of a convex lens, the image formed at C1. The image is real, inverted and same size as object. $2x\sqrt{2}$ When object is placed at C2 of a concave lens, the image is formed at the object side between Focus and optic centre. The image is virtual, erect and diminished. $2x\sqrt{2}$ Any one diagram is sufficient & matter $1 + 1\frac{1}{2} = 2\frac{1}{2}$ $2\frac{1}{2}$ Case(ii): When object is placed between F2 of P of a convex lens, the image is formed at the object side. The image is virtual, erect and enlarged. $2\frac{1}{2}$ When object is placed between F2 of P of a convex lens, the image is formed at the object side. The image is virtual, erect and enlarged. $2\frac{1}{2}$ When object is placed between F2 of P of a concave lens, the image is formed at the object side. The image is virtual, erect and enlarged. $2\frac{1}{2}$	
1Atomic radiusdecreaseincrease $4x^{1/2}=2$ 2Ionisation energyincreasedecrease $4x^{1/2}=2$ 3Electron affinityincreasedecrease $2x^{1/2}=2$ 4Electron egativityincreasedecrease $2x^{1/2}=2$ 23.Case(i): When object is placed at C2 of a convex lens, the image formed at C1. The image is real, inverted and same size as object. $2x^{1/2}=2x^{1/2}$ When object is placed at C2 of a concave lens, the image is formed at the object side between Focus and optic centre. The image is virtual, erect and diminished. $2x^{1/2}=2x^{1/2}$ Case(ii): When object is placed between F2 of P of a convex lens, the image is formed at the object side. The image is virtual, erect and enlarged. $2x^{1/2}=2x^{1/2}$ When object is placed between F2 of P of a convex lens, the image is formed at the object side. The image is virtual, erect and enlarged. $2x^{1/2}$ When object is placed between F2 of P of a convex lens, the image is formed at the object side. The image is virtual, erect and enlarged. $2x^{1/2}$ When object is placed between F2 of P of a concave lens, the image is formed at enlarged to the object is placed between F2 of P of a concave lens, the image is formed at concave lens, the image is formed at enlarged to the field of fi	
3Electron affinity increaseincrease decreasedecrease23.Case(i): When object is placed at C2 of a convex lens, the image formed at C1. The image is real, inverted and same size as object.2When object is placed at C2 of a concave lens, the image is formed at the object side between Focus and optic centre. The image is virtual, erect and diminished.2½Any one diagram is sufficient & matter $1 + 1\frac{1}{2} = 2\frac{1}{2}$ 2½Case(ii): When object is placed between F2 of P of a convex lens, the image is formed at the object side. The image is virtual, erect and enlarged.2½V2V2V2V2V3V4V4V4V4V4V4V4V5V4V4V4V5V4V4V4V4V4V5V4V4V4V4V4V5V4V5V4V5V4V4V4V5V4V4V4V5V4V5V5V5V5V6V4V6V4V6V5V6V5V6V4V5V4V4V4V5V5V5V5V6V5V6V6V6V6V6V6V6V6V6V6V6V6V6V6V6V6V6<	
3Electron affinity increaseincrease decreasedecrease23.Case(i): When object is placed at C2 of a convex lens, the image formed at C1. The image is real, inverted and same size as object.2When object is placed at C2 of a concave lens, the image is formed at the object side between Focus and optic centre. The image is virtual, erect and diminished.2½Any one diagram is sufficient & matter $1 + 1\frac{1}{2} = 2\frac{1}{2}$ 2½Case(ii): When object is placed between F2 of P of a convex lens, the image is formed at the object side. The image is virtual, erect and enlarged.2½V2V2V2V2V3V4V4V4V4V4V4V4V5V4V4V4V5V4V4V4V4V4V5V4V4V4V4V4V5V4V5V4V5V4V4V4V5V4V4V4V5V4V5V5V5V5V6V4V6V4V6V5V6V5V6V4V5V4V4V4V5V5V5V5V6V5V6V6V6V6V6V6V6V6V6V6V6V6V6V6V6V6V6<	5
4Electro negativityincreasedecrease223.Case(i): When object is placed at C2 of a convex lens, the image formed at C1. The image is real, inverted and same size as object.2When object is placed at C2 of a concave lens, the image is formed at the object side between Focus and optic centre. The image is virtual, erect and diminished.2½Any one diagram is sufficient & matter $1 + 1\frac{1}{2} = 2\frac{1}{2}$ 2½Case(i): Case(i): When object is placed between F2 of P of a convex lens, the image is formed at the object side. The image is virtual, erect and enlarged.2½2 $\frac{1}{2} + \frac{1}{2} + $	5
23. Case(i): When object is placed at C ₂ of a convex lens, the image formed at C ₁ . The image is real, inverted and same size as object. When object is placed at C ₂ of a concave lens, the image is formed at the object side between Focus and optic centre. The image is virtual, erect and diminished. Any one diagram is sufficient & matter $1 + 1\frac{1}{2} = 2\frac{1}{2}$ Case(ii): When object is placed between F ₂ of P of a convex lens, the image is formed at the object side. The image is virtual, erect and enlarged. 2½ When object is placed between F ₂ of P of a convex lens, the image is formed at the object side. The image is virtual, erect and enlarged. 2½ When object is placed between F ₂ of P of a convex lens, the image is formed at the object side. The image is virtual, erect and enlarged. 2½	5
formed at C ₁ . The image is real, inverted and same size as object. When object is placed at C ₂ of a concave lens, the image is formed at the object side between Focus and optic centre. The image is virtual, erect and diminished. Any one diagram is sufficient & matter $1 + 1\frac{1}{2} = 2\frac{1}{2}$ Case(ii): When object is placed between F ₂ of P of a convex lens, the image is formed at the object side. The image is virtual, erect and enlarged. 2½ When object is placed between F ₂ of P of a concave lens, the image is formed at $C_2 = F_2 = P$ $F_1 = C_1$ $C_2 = F_2 = P$ $C_2 = F_2 = P$ $C_1 = F_1 = C_1$ $C_2 = F_2 = P$	5
When object is placed at C ₂ of a concave lens, the image is formed at the object side between Focus and optic centre. The image is virtual, erect and diminished. Any one diagram is sufficient & matter $1 + 1\frac{1}{2} = 2\frac{1}{2}$ Case(ii): When object is placed between F ₂ of P of a convex lens, the image is formed at the object side. The image is virtual, erect and enlarged. 2½ When object is placed between F ₂ of P of a concave lens, the image is formed at the object side. The image is virtual, erect and enlarged. 2½	5
the object side between Focus and optic centre. The image is virtual, erect and diminished. Any one diagram is sufficient & matter $1 + 1\frac{1}{2} = 2\frac{1}{2}$ Case(ii): When object is placed between F ₂ of P of a convex lens, the image is formed at the object side. The image is virtual, erect and enlarged. 2½ When object is placed between F ₂ of P of a concave lens, the image is formed at the object side. The image is virtual, erect and enlarged. 2½	5
erect and diminished. Any one diagram is sufficient & matter $1 + 1\frac{1}{2} = 2\frac{1}{2}$ Case(ii): When object is placed between F ₂ of P of a convex lens, the image is formed at the object side. The image is virtual, erect and enlarged. $2\frac{1}{2}$ When object is placed between F ₂ of P of a convex lens, the image is virtual, erect and enlarged. $2\frac{1}{2}$ When object is placed between F ₂ of P of a convex lens, the image is virtual, erect and enlarged. $2\frac{1}{2}$	5
Any one diagram is sufficient & matter $1 + 1\frac{1}{2} = 2\frac{1}{2}$ Case(ii): When object is placed between F ₂ of P of a convex lens, the image is formed at the object side. The image is virtual, erect and enlarged. 2½ When object is placed between F ₂ of P of a convex lens, the image is virtual, erect and enlarged. When object is placed between F ₂ of P of a convex lens, the image is formed at the object side. The image is formed at	
$\begin{array}{c} \underline{Case(ii):} \\ \hline \\ When object is placed between F_2 of P of a convex lens, the image is formed at the object side. The image is virtual, erect and enlarged. \\ 21/2 \\ \hline \\ \\ \hline \\ \\ C_2 \\ F_2 \\ F_2 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	
$\begin{array}{c} \underline{Case(ii):} \\ \hline \\ When object is placed between F_2 of P of a convex lens, the image is formed at the object side. The image is virtual, erect and enlarged. \\ 21/2 \\ \hline \\ \\ \hline \\ \\ C_2 \\ F_2 \\ F_2 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	
$\begin{array}{c} \underline{Case(ii):} \\ \hline \\ When object is placed between F_2 of P of a convex lens, the image is formed at the object side. The image is virtual, erect and enlarged. \\ 21/2 \\ \hline \\ \\ \hline \\ \\ C_2 \\ F_2 \\ F_2 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	
$\begin{array}{c} \underline{Case(ii):} \\ \hline \\ When object is placed between F_2 of P of a convex lens, the image is formed at the object side. The image is virtual, erect and enlarged. \\ 21/2 \\ \hline \\ \\ \hline \\ \\ C_2 \\ F_2 \\ F_2 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	
image is formed at the object side. The image is virtual, erect and enlarged. $2^{1/2}$ When object is placed between F ₂ of P of a concave lens, the image is formed at	
image is formed at the object side. The image is virtual, erect and enlarged. $2^{1/2}$ When object is placed between F ₂ of P of a concave lens, the image is formed at	1
$\begin{array}{cccc} & & & & & & \\ \hline & & & & \\ \hline \\ \hline$	
$\begin{array}{cccc} F_{2} & F_{2} & P \\ \hline \\ C_{2} & F_{2} & P \\ \hline \\ When object is placed \\ between F_{2} of P of a \\ concave lens, the \\ image is formed at \\ \hline \\ C_{2} & F_{2} & P \\ \hline \\ \hline \\ F_{1} & C_{1} \\ \hline \\ F_{1} & C_{1} \\ \hline \\ F_{2} & C_{2} \\ \hline \\ F_{2} & F_{2} \\ \hline \\ F_{1} & C_{1} \\ \hline \\ F_{2} & F_{2} \\ \hline \\ F_{2} & F_{2} \\ \hline \\ F_{1} & C_{1} \\ \hline \\ F_{2} & F_{2} \\ \hline \\ F_{2} & F_{2} \\ \hline \\ F_{1} & C_{1} \\ \hline \\ F_{1} & C_{1} \\ \hline \\ F_{2} & F_{2} \\ \hline \\ F_{2} & F_{2} \\ \hline \\ F_{1} & C_{1} \\ \hline \\ F_{2} & F_{2} \\ \hline \\ F_{2}$	
When object is placed between F_2 of P of a concave lens, the image is formed at	
When object is placed between F_2 of P of a concave lens, the image is formed at	
When object is placed between F_2 of P of a concave lens, the image is formed at	
When object is placed between F_2 of P of a concave lens, the image is formed at	
between F_2 of P of a concave lens, the $F_1 = C_1$	
between F_2 of P of a concave lens, the $F_1 = C_1$	
image is formed at C. F. D	
image is formed at $C_2 F_2 P$	
the object side between \land	
focus and optic centre. The image is virtual, erect and diminished.	
Any one diagram is sufficient & matter $1 + 1\frac{1}{2} = 2\frac{1}{2}$	
24 The gas liberated is carbon dioxide (CO_2). 1	5
Required apparatus : Test tube, CaCO ₃ , one holed rubber cork, Delivery 2	
tube, Spirit lamp, Lime water, Stand, beaker	
and the second sec	
PKM-SA-2 NAGA MURTHY- 9441786635	
2015-16 Contact at : <u>nagamurthysir@g</u> Visit at : <u>nagamurthy.weebly.</u>	
visit at : nagamurthy.weebly.	

S. No	Ans.	S. No	Ans.	S. No	Ans.
1	В	11	A	21	Oiling/greasing/paint ing/galvanizing/chro me plating or any related
2	С	12	D	22	acidic
3	D	13	D	23	Germanium (Ge)
4	С	14	D	24	S-S
5	С	15	А	25	1.54
6	С	16	В	26	С
7	В	17	D	27	D
8	С	18	D	28	А
9	В	19	С	29	G
10	*	20	С	30	F

KEY SHEET - PART-B

Note : * means allot full marks.

PKM-SA-2 2015-16 NAGA MURTHY- 9441786635 Contact at : <u>nagamurthysir@gmail.com</u> Visit at : nagamurthy.weebly.com