NELLORE DISTRICT COMMON EXAMINATION BOARD
 HALF YEARLY EXAMINATIONS-JANUARY-2016
 GENERAL SCIENCE , Paper - I

(Physical Sciences)
(English Version)

Class-10 - Principles of Evaluation - PART-A

7.	According to the occupation of differentiating electron the elements are classified into four blocks. They are s, p, d and f-blocks.		$\begin{array}{\|c} \hline \text { Any } \\ \text { related } \\ 1 \end{array}$	2
8.	Ammonia $\left(\mathrm{NH}_{3}\right)$: H: $\underset{\sim}{\mathrm{N}} \mathrm{H}$: H (or)	Water molecule $\left(\mathrm{H}_{2} \mathrm{O}\right)$:	$\begin{array}{\|l\|} \hline 2 \times 1 \\ \text { Any } \\ \text { related 2 } \\ \text { figures } \end{array}$	2
9.	$\begin{aligned} & (\mathrm{T})=\frac{m_{1} T_{1}+m_{2} T_{2}}{m_{1}+m_{2}}=\frac{50 \times 20+50 \times 40}{50+50}=\frac{1000+2000}{100}=\frac{3000}{100} \quad=30^{\circ} \mathrm{C} \quad(\text { OR }) \\ & (\mathrm{T})=\frac{T_{1}+T_{2}}{2}=\frac{20+40}{2}=\frac{60}{2}=30^{\circ} \mathrm{C} \end{aligned}$		$\begin{array}{\|l\|} \hline \text { Formula a } \\ 1 / 2 \\ \text { Answer } \\ 1 / 2 \\ \hline \end{array}$	1
10.	The amount of work done by chemical force to move unit positive charge from anode to cathode. (Any related one point)		*	1
11.	If an induced current flows, its direction is always to oppose the change. (Any related one point)		*	1
12.	(i) Electronic configuration of Argon : $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6}$ (ii) Electronic configuration of Chromium : $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1} 3 d^{5}$ (Any related two points)		$2 \mathrm{x}^{1 / 2}$	1
13.	Atom with atomic number 9 belongs to ' p ' block Atom with atomic number 27 belongs to 'd' block.		$2 \mathrm{x}^{1 / 2}$	1
14.	The electrons in inner shells are strongly bounded with the force of attraction of nucleus. They are all ready stable electrons. So electrons in outer most shell are responsible for formation of bond .		$2 \mathrm{x}^{1 / 2}$	1
15.	Diamonds have high refractive index (2.42). The critical angle of diamond is very less $\left(24.4^{\circ}\right)$. By cutting the faces of diamond in such a way that most of the incident rays at every face get total internal reflection. This is the reason for shining of diamonds. (Any related four points)		4×1	4
16.	concave lens is used		1	
	The focal length of this bi-concave lens. (f) $u=-\infty ; v=$ distance of far point $=-D$ Using lens formula, $\begin{aligned} 1 / \mathrm{f} & =1 / \mathrm{v}-1 / \mathrm{u} \\ 1 / \mathrm{f} & =1 /-\mathrm{D} \\ \mathrm{f} & =-\mathrm{D} \end{aligned}$ Here ' f ' is negative showing that it is a concave lens		3	4
17.	Place a prism on the paper. Draw the boundary line with pencil. Name the vertices as P, Q and R . Measure the angle of the prism at ' P ' and note down it as 'A' . Now fix two pin on the line which was drawn with an angle to the surface ' PQ '. Observe the images at ' PR ' side and fix another two pins such that four pins lie along a straight line.		1	
	Remove the prism. Extend the incident ray and emergent ray such that they can intersect with each other. The angle between incident ray and emergent ray is called angle of deviation (d).		1	
	Find angle of deviations for different angles of incidence. The minimum value of ' d ' is to be taken as angle of minimum deviation (D). Refractive index of prism is calculated by the formula $n==\frac{\sin \left(\frac{A+D}{2}\right)}{\sin \left(\frac{A}{2}\right)}$		1	4 NLR-SA-2
NAGA MURTHY-9441786635 Contact at : nagamurthysir@gmail.com Visitat: nagamurthy.we			ebly.com	

21.	The position of element tells us the atomic number, number of valence electrons and valency of the element. This helps in predicting the reactivity, comparative atomic size, metallic character, comparative ionisaion energy, in which type of bonds it can participate. Ex: Group 17, the elements have 7 valence electrons. The valency of the elements in that group is 1 . All these elements are highly reactive. They are non metals. Atomic size increases, and ionization energy decreases from top to bottom in that group. All the elements can gain one electron for their stability. All can participate in forming covalent bonds.	Any related three points 3×1 Example 1	4
22.	The intermixing of atomic orbitals of almost equal energies of an atom	1	
	Formation of BF_{3} molecule: (i) $\operatorname{Boron}(Z=5)$ is $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{1}$. (ii) In excited state is $1 s^{2} 2 s^{1} 2 p^{2}$. (iii) Due to hybridization three identical sp^{2}-hybrid orbitals are formed and Separated in a planar triangular shape. (iv) Flulorine $(\mathrm{Z}=9)$ is $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{5}$. (v) It has unpaired electrons in $2 p_{z}$ orbital. (vi) The three sp^{2}-hybrid orbitals in boron forms sigma bonds with each of p-orbitals in three Fluorine atoms. Thus BF_{3} is formed with planar triangular shape.	Any related points	4
23.		$\begin{gathered} \hline \text { Diagram } \\ 3 \\ \text { Part } \\ 2 \end{gathered}$	5
24		Diagram 3 Parts 2	5

KEY SHEET - PART-B

S. No	Ans.	S. No	Ans.	S. No	Ans.
$\mathbf{1}$	B	11	B	21	Fog
$\mathbf{2}$	A	12	D	22	Convex
$\mathbf{3}$	B	13	C	23	Power of lens
$\mathbf{4}$	A	14	C	24	6Ω
$\mathbf{5}$	B	15	D	25	Tesla
$\mathbf{6}$	B	16	A	26	B
7	A	17	B	27	D
$\mathbf{8}$	B	18	B	28	A
9	B	19	A	29	F
$\mathbf{1 0}$	A	20	D	30	C

Note: * means allot full marks.

```
NLR-SA-2
2015-16
```

NAGA MURTHY-9441786635
Contact at: nagamurthysir@gmail.com Visit at: nagamurthy.weebly.com

