PRAKASAM DISTRICT COMMON EXAMINATION BOARD PRE PUBLIC EXAMINATIONS-MARCH-2016

GENERAL SCIENCE, Paper – I

(Physical Sciences)

(Telugu Version)

<u>Class-10 - Principles of Evaluation - PART-A</u>

Q.No	Points for Evaluation	Marks allotted	Total Marks		
1.	The bottle will be broken.	2x 1	2		
	Because Water expands on freezing.				
2.	If the angle of refraction is 90° ; that incident angle is called critical				
	angle.				
	When light travels from denser medium to rarer medium, if the incident	2x 1	2		
	angle is more than the critical angle then Total internal reflection				
	occurs.				
3.	Presbyopia means decreasing the ability of accommodation of eye.	2x 1	2		
	To correct this type of eye defect, we use bi focal lens.				
4.	Television works on the motion of electrons, charged particles.	2x 1	2		
	When a bar magnet is brought close to the screen, magnetic field exerts				
	a force on the moving charge.				
5	So the picture appears as distorted.	2.1	2		
5.	Reaction in test tube A is vigorous. Receives Hydro chloric acid is a strong acid		Z		
6	(i) The orbit which is nearer to the puckets has less energy	2v1	2		
0.	(i) The orbit which is heater to the nucleus has less energy. (ii) $K(n-1)$ is the closest to the nucleus. Shall $L(n-2)$ is at higher		2		
	(ii) \mathbf{K} (ii–1) is the closest to the hucleus. Shell \mathbf{L} (ii–2) is at higher energy level				
7	(i) In periods, the atomic radius decreases from left to right	2x1	2		
/.	(i) In groups, the atomic radius increases from top to bottom		2		
8	(i) Consumption of small quantity of ethanol causes drunkenness				
0.	(i) Large quantity of ethanol consumption effect the nervous system	Any two			
	(iii) Ethanol consumption leads to slow down the metabolic processes.	points			
	(iv) Driving vehicles when taken alcohol causes accidents.	2x1	2		
	So, I condemn the use of alcohol as a social practice.				
9.	(i) From which place, we can take measurements?	Any two			
	(ii) Where should we keep the screen?	questions	1		
		$2x = \frac{2}{2}$			
10.	The splitting of white light in to different colours	*	1		
11.	1 KWH (or) 3.6×10^{6} Joule (or) 3.6×10^{13} erg	*	1		
			-		
12.	$Fe_2O_3 + 3 CO \rightarrow 2 Fe + 3 CO_2$	*	1		
12		.12	1		
13.	Distilled water does not contain any ionic substance that can dissociate		1		
	nydronium ion. That's why it does not conduct electricity.				
14	A The feesible meterial formed due to reaction between flux and generate *				
17.	(or) $Slag = Flux + Gangue$		1		
	(or) Shug - Thus - Galigue				
		1			
	NAGA MURTHY- 9	441786635			
	Contact at : <u>naga</u> Visit at : <u>nagam</u> u	murtnysir@g Irthy.weebly.o	mail.com		
2015-16		,			

15.	Evaporation depends upon the surface area of the liquid: Take 5ml of spirit in a small plate And big plate (without lid). Observation : The spirit in the big dish that disappears quickly. This means that Evaporation depends upon the surface area of the liquid.			4	
	Evaporation depends upon the vapour already present in Take 5ml of spirit in two small cups. Put one cup in the A put another in the normal room. Observation: The spirit in the normal room disappears q means that the rate of evaporation depends upon the vapor present in surrounding area.	surrounding : A.C. room and uickly.This our already	2x1=2		
16.	 The atmosphere molecules and atoms scatter light of different wavelengths which are comparable to their size. Molecules having a size that is comparable to the wavelength of red light are less in the atmosphere. Hence scattering of red light is less when compared to the other colours of light. The light from the sun needs to travel more distance in atmosphere during sunrise and sunset to reach our eye. Since scattering of red light is very small, it reaches us. As a result sun appears red in colour during sunrise and sunset 			4	
17.	$ \begin{array}{c} $				
	R_1 , R_2 and R_3 are connected in parallel. I_1 , I_2 and I_3 are the flow of current through the resistors R respectively. Let 'V' is the potential difference between the ends of each	1	4		
	Ohm's law : $V = I R \Rightarrow I = \frac{V}{R}$ Apply this ohm's law for R ₁ , R ₂ and R _{3.} Then $I_1 = \frac{V}{R_1}$ $I_2 = \frac{V}{R_2}$ $I_3 =$ Let the resultant flow of current is 'I' and R is the resulta Then $I = \frac{V}{R}$	1			
	In parallel arrangement		1		
18.	Apply Kirchhoff's loop law for ABCDA loop : 5 - 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2		1		
	$-3 - 2 I_1 - (I_1+I_2) + 12 = 0 - 5 I_1 + 3 I_2 = 7(1)$ Apply Kirchhoff's loop law for AFEDA loop : $-4 I_2 - (I_1+I_2) + 12 = 0 - 3 I_1 + 7 I_2 = 12(ii)$				
	Do (ii) x 5 then $15 I_1 + 35 I_2 = 60$ (iii) Do (i) x 3 then $15 I_1 + 9 I_2 = 21$ (iv) $26 I_2 = 39 \Rightarrow I_2 = \frac{39}{26} = \frac{3}{2} = 1.5 A$ From (i) $5 I_1 + 3 (1.5) = 7 \Rightarrow 5 I_1 + 4.5 = 7 \Rightarrow 35 I_2 = 10$	$I_1 = 0.5 \text{ A}$	1	4	
	The current drawn from the battery having 12 V e.m.f. is $I_1 + I_2 = 1.5 + 0.5 = 2$ A Note : any loop in any direction can take				
PKM-PP 2015-16		Contact at : <u>naga</u> Visit at : nagamu	murthysir@g Irthy.weebly.c	<u>mail.com</u> com	

19.	Aufbau Principle: The electron occupies the orbital having the least							
	energy first.	the orbital	dopends i	roon the v	$\frac{1}{2}$	· 1) The		-
	electron goes to	an orbital	whose (n	(+ l) value	e is minim	1m.		4
							$3x\frac{1}{2}$	
		Orbital	n	l	$\mathbf{n} + \boldsymbol{l}$		2	
		2s	2	0	2			
		2p	2	1	3			
		· •			· · · · · ·			
	The electron occ	cupies 2s c	orbital firs	t and then	2p will be	occupied.	 	4
	If two orbitals have the same $(\mathbf{n} + \mathbf{l})$ value, the orbital having lower n' value will be occupied first							
	value will be occupied first.					ا ا		
		2-		L 1		4	$3x\frac{1}{2}$	
		<u>- 3p</u>	<u>د</u>		4	_	2	
		3d	3	2	5			
	l	4s	4	0	4			
	The electron c	occupies 3	ρ , 4s and 3	3d respect	ively.			
20.	Valence bond t	theory: Su	ggested by	y Linus Pa	auling (195	54).	Any related	
	1. A covalent bond between two atoms is formed when the two atoms approach each other closely and one atom overlaps its valence orbital containing unpaired electron, the valence orbital of the other atom							
	that contains the unpaired electron of opposite spin.						41	
							481	4
	2. The greater the overlapping of the orbitals that form the bond, the stronger will be the bond							
	stronger will be the bond.							
	3. Each bonded atom maintains its own atomic orbitals but the electron pair in the overlapping orbitals is shared by both the atoms involved in the overlapping.							
	4. If two atoms form multiple bonds between them the first bond is due							
	to the overlap of	f orbitals a	long the i	nter-nucle	ar axis giv	ing a stronger		
	sigma(σ) bond.	After form	nation of (σ) bond th	e other bo	nds are formed		
	due to the overia	ap of orbit	als side w	ise or late	rally giving	g weaker π		
21.	(i) We use hand	nicking ir	ı separatin	ng stones f	rom rice a	nd dal in our		
	daily life.	r .	- ~ · I				1	
	Hand picking:	If the ore j	particles a	nd the imp	purities are	different in]
	one of the prope	erties like of	colour, siz	e etc., Usi	ng that pr	operty either	1	
	ore particles of a	Impunico	are nanop	ickeu.				
	(ii) We use was!	hing to sep	parate dust	t from veg	etables, ric	ce and dal in our		4
	daily life.	• •	<u> </u>			^ 171	1	_
	Washing: Ore p	particles ar	e crushea	and kept	on a slopy	surface. They	1	
	carried away by	water flor	w. leaving	the more	densive or	e narticles	1	
	behind.							
	<u> </u>						<u> </u>	
						NAGA MURTHY- 94	441786635	
PKM-PP						Contact at : nagar	murthysir@g	<u>ımail.com</u>
2010-10						Visit at : nagamu	rthy.weebly.	com

22.	The chemical reaction in which an atom or a group of atoms in a given compound is replaced by other atom or group of atoms is called a substitution reaction.	1	
	Ex: If Methane (CH ₄) reacts with chlorine in the presence of sunlight, the hydrogen atoms substituted with chlorine atoms.	1	4
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Any two equations related 2	
23.		3	5
	Properties of image : (i) Real image (ii) Inverted image (iii) Same size image	2	
24.	Plastic mug Hydrogen Test tube Graphite rod Anode Switch Battery Plastic mug Hydrogen Water (OR) (OR) (I) (I) (I) (I) (I) (I) (I) (I	Diagram 3 Any four parts $4x\frac{1}{2}=2$	5

KEY SHEET - PART-B

Sl No.	Ans.	Sl No.	Ans.	Sl No.	Ans.
1	D	11	А	21	Specific heat
2	*	12	С	22	Critical angle
3	В	13	А	23	70 cm
4	А	14	С	24	4 D
5	А	15	В	25	0
6	В	16	D	26	В
7	С	17	А	27	E
8	*	18	В	28	D
9	В	19	С	29	A
10	*	20	D	30	С

Note : * means allot full marks.