PRAKASAM DISTRICT COMMON EXAMINATION BOARD PRE PUBLIC EXAMINATIONS-FEBRUARY-2015 **GENERAL SCIENCE**, Paper – I

(Physical Sciences) (English Version)

Class-10 - Principles of Evaluation - PART-A

Q.No	Points for Evaluation					Total Marks
1.	Watermelon consists of more water and it has greater specific heat value.			2x 1	2	
	So watermelon takes long time to rise in its temperature.					
2.		Convex Mirror		Concave Mirror		
	1	This is a spherical mirror	1	This is a spherical mirror	Any two	
		whose reflecting surface		whose reflecting surface is	points	
		is curved outward is		curved inward is called	related	
		called convex mirror.		called concave mirror.	2x1	2
	2	The focus lies behind the	2	The focus lies infront of the	2/11	
		mirror.		mirror.		
	3	diverging mirror.	3	converging mirror.		
	4	forms virtual images.	4	form virtual and also real		
	_	forms amallings as	F	images.		
	5 6	forms small images.	5 6	forms different size images. form erect and also invert		
	0	forms erect images.	0	images.		
	7	forms image behind the	7	form image behind and also		
		mirror.	'	infront of the mirror.		
3.	The oil occupies the gaps in the papers when it stained.					
	If the refractive indices of both paper and oil are exactly equal, then it becomes transparent. Generally oil paper is translucent.				2x 1	2
4.		his law was used in security		· · · ·		
-	1	•	•	to listen to songs (or) record	Any two	
	voices works on the principle of electromagnetic induction.					
	* The principle is used in the case of using ATM card when its				related 2x1	2
	magnetic strip is swiped through a scanner.					
		n induction stove works on the				
5.	It helps to slow down the oxidation process.			2x 1	2	
		oes not allow the spoiling of			Any two	
6.	* for making toys. * making materials for decoration					2
	* making surfaces smooth. * plaster for fractured bones. * for ceiling the roof in houses to protect from heat.					2
	1	anufacture of Gypsum.	υμ	olect Holli Heat.	2x1	
7.	111	Tanadaro or Oypouri.		_		
, ,					Fig +	
					Parts	
		Ore	1)		1+1	2
		Hearth		Fire		
		Hourth		box		

	T					1	
8.	$ \begin{array}{c c} H & CI \\ C \longrightarrow C \longrightarrow C \end{array} $	CI H	H OH c — c – H H	H 	— ОН		2
9.	H Heat energy required to ch	H II	see of euk		co from a		1
9.	solid state to liquid state, w	•					1
10.	The reciprocal of focal leng The unit of power is dioptre		ower of I	ens.		$2x\frac{1}{2}$	1
11.	Kirchhoff,s Junction law.						1
12.	$C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4$					4	1
13.	It gives the size and energ	y of an orbit.				$2x\frac{1}{2}$	1
14.	The impurities present in the	ne ore is calle	ed gangu	e.		1x1	1
15.	M M					1	4
	Take a circular metal disc. Mark two perpendicular lines MM and NN. Then mark the angles from 0° to 90° on both sides of the line NN. Repeat the same on the other side of the line NN. Arrange two straws at the centre of the disc. Adjust one of the straws to make an angle 10° with the normal NN (i). Immerse half of the disc vertically into the water, filled in a transparent vessel. (MM coincides the surface of the water) From the top of the vessel try to view the straw which is inside the water. Then adjust the other straw which is outside the water until both straws appear to be in a single straight line. Then take the disc out of the water and observe the two straws on it. Measure the angle between the normal and second straw. (r). Note down the angle of incidence and angle of refraction in the table. Do the same for various angles like15°, 20°, 25°, 30°, 35° and 40°. Find the corresponding angles of refraction and note them.					3x1=3	
	SI. No.	(i)	(r)				
	1	10°					
	2	15°					
	3	20°					
			 	(0) (0	arootor their		
	We observed that the angle of refraction(r) is always greater than						
16.	the angle of incidence (i).	VAVA-00000	a lene er	Δ P	and P		
10.	centre of curvatures of convexo-concave lens are R_1 and R_2 Given that $R_2 = 2R_1$ Focal length of lens (f) = 24cm Refractive index of the lens (n) = 1.5				1		

	Lens maker's formula : $\frac{1}{f} = (n-1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)$	1	4
	for convexo-concave lens	1	4
	R_1 is positive and R_2 is positive.		
	$\Rightarrow \frac{1}{f} = (n-1)(\frac{1}{R_1} - \frac{1}{R_2})$		
	,,,	1	
	$\Rightarrow \frac{1}{24} = (1.5 - 1) \left(\frac{1}{R_1} - \frac{1}{2R_1} \right)$		
	$\Rightarrow \frac{1}{24} = (0.5) \left(\frac{2-1}{2R_1}\right)$		
	→ $2R_1 = 12$ → $R_1 = 6cm$	1	
17.	$R_2 = 2R_1 = 12cm$ Take a metal tray and fill it with water.		
17.	Place a mirror such that it makes an angle to the water surface.		
	Keep a white card board screen/sheet above the water surface.	$6x^{\frac{1}{2}} = 3$	
	Now focus white light on the mirror through water.	$\frac{0}{2}$	
	Try to obtain the colours on the screen.		
	We can see the 7 colours (VIBGYOR) of rainbow on screen.		_
	Dispersed light	Figure	4
	White light	1	
	water		
	Metal Tray		
18.	R ₁		
	$\frac{R_2}{R_2}$	1	
	$\left \begin{array}{c c} I_2 & R_3 \end{array} \right $	1	
	Let R ₁ , R ₂ and R ₃ resistances connected in parallel		
	The current through them is i ₁ , i ₂ and i ₃ respectively.	1	4
	The total voltage difference is V is fixed in this circuit.		
	Ohm's law: $V = iR \rightarrow i = \frac{V}{R}$	1	
	Apply Ohm's law, then $i_1 = \frac{V}{R_1}$, $i_2 = \frac{V}{R_2}$, $i_3 = \frac{V}{R_3}$		
	If the total current in the circuit is 'i' then $i = i_1 + i_2 + i_3$		
	$i = \frac{V}{R_1} + \frac{V}{R_2} + \frac{V}{R_3} \Rightarrow \frac{V}{R} = \frac{V}{R_1} + \frac{V}{R_2} + \frac{V}{R_3} \Rightarrow \frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$	1	
10			
19.	Prepare solutions of glucose, alcohol, hydro chloric acid and sulphuric acid etc., Connect two different coloured electrical wires		
	to graphite rods separately in a 100 ml beaker. Connect free		
	ends of the wire to 6V battery through a bulb & a switch.		
	Pour some dilute HC/ in the beaker and switch on the current.	2	
	Repeat activity with other solutions separately. The bulb glows		4
	only in acid solutions but not in other solutions. Glowing of bulb		
	indicates that there is flow of electric current through the solution.		
	Acid solutions have hydrogen ions and the moment of these ions		
	in solution helps for flow of electric current through the solution.		
	Alcohol and glucose contains hydrogen but not dissociates	1	
	hydrogen ion in their aqueous solutions. So they are not categorized as acids.		
	Lateguized as acids.		

		1	
	6 voit buffery—1040 Swell Bruker Bruker Bruker Bruker Bruker Bruker	1	
20.	 (a) (i) In periods, atomic radius decreases (ii) In groups, atomic radius increases (b) (i) In periods, I.P. do not follow any regular trend / increases (ii) In groups, Ionization potential decreases (c) (i) In periods, electron affinity increases. (ii) In groups, electron affinity decreases. (d) (i) In periods, Electro Negativity increases (ii) In groups, Electro Negativity decreases 	$8x\frac{1}{2}$	4
21.	lonic compounds Covalent compounds		
22.	1 formed due to ionic bond 1 formed due to covalent bond 2 have high melting points. 2 have low melting points. 3 have high boiling points. 3 have low boiling points. 4 crystalline structure. 4 different shapes. 5 good electric conductors 5 poor electric conductors 6 good heat conductors. 6 poor heat conductors. 7 They ionize quickly 7 They does not ionize 8 Ex: NaCl, KCl 8 Ex: H₂O, NH₃ Alkanes are saturated hydrocarbons. So they participate in substitution reactions. A reaction in which an atom or a group of atoms in a compound is replaced by other atom or group of atoms is called a substitution reaction. Ex: Methane (CH₄) reacts with Cl₂ in the presence of sunlight. CH₄ + Cl₂ → CH₃Cl + HCl Methyl Chloride CH₃Cl + Cl₂ → CH₂Cl₂ + HCl Methyl Chloride CH₂Cl₂ + Cl₂ → CHCl₃ + HCl	2x1=2 Any two examples 2 x 1=2	4
	Methylene Chloride Chloroform		
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
23.	A.C.Generator: Rotation Slip rings	Figure 4 Parts 1	5
24	Buslies Z Z Z Z Z Z Z Z Z Z Z Z Z	Five Figures 5x1 =5	5

KEY SHEET - PART-B

Sl No.	Ans.	Sl No.	Ans.	Sl No.	Ans.
1	D	11	A	21	15 cm
2	С	12	С	22	non ohmic
3	В	13	D	23	Tesla (or) Wb/m ²
4	A	14	C	24	calcination
5	A	15	В	25	But, 2-yn, e
6	В	16	A	26	b
7	C	17	A	27	e
8	D	18	В	28	d
9	В	19	C	29	c
10	D	20	D	30	a

Prepared by: V.NAGA MURTHY- 9441786635
Contact at: nagamurthysir@gmail.com
Visit at: nagamurthy.weebly.com