Class-09 - Principles of Evaluation - PART-A \&B

Q.No	Points for Evaluation	Marks allotted	Total Marks
1.	(i) సంపీడనాలు లేదా సాంద్రీకరణాలు (ii) విరళీకరణాలు (any related answer also suitable even it is in one sentence)	$2 \mathrm{x}^{1 / 2}$	1
2.	(i) ద్రావణాన్ని వేడి చేయాలి (ii) మరికొంత చక్కెరను కలపాలి. - అతి సంతృప్త ద్రావణం ఏర్పడుతుంది. (any related answer also suitable even it is in one sentence)	$2 \mathrm{x}^{1 / 2}$	1
3.	(ప్రశ్న పత్రం లో ఏ విధమైన పటం ఇవ్వబడలేదు-కనుక ఈ ప్రశ్నకు సమాధానం లేదు) (ఏదేని జిల్లాల ప్రశ్న్ పత్రాలలో పటం ఇచ్చి ఉంటే సంబంధిత సమాధానాన్ని పరిగణించగలరు.) (Allot 1 mark for each student for this question - add mark)	1	1
4.	32 గ్రాముల ఆక్సిజన్ అణువులోని మోల్లు $=1$ మోల్ 32 గ్రాముల ఆక్సిజన్ అణువులోని మోల్లు $=\frac{8}{32} \times 1=\frac{1}{4}$ మోల్ (or) 0.25 మోల్ (any related answer also suitable even it contains only second sentence)	1	1
5.	రెండు కణాల మధ్య గురుత్వాకర్నణ బలం పనిచేయని సందర్భం ఉండదు.	1	2
	ద్రవ్యరాశి గల ప్రతి వస్తువు మరో వస్తువుపై గురుత్వాకర్నణ బలాన్ని ప్రదర్శిస్తుంది. (any related answer also suitable even it contains only second sentence)		
6.	(i) సంయోగ పదార్థం లేదా సమ్మేళనం అనగా నేమి? (ii) మిశ్రమం అనగా నేమి? (iii) టింక్చర్ అయోడిన్ లో ఒకటి కంటే ఎక్కువ అణుఘటాకాలు ఉన్నాయా? (iv) టింక్చర్ అయోడిన్ లో ఒక అణఘఘటకమే ఉంటుందా? (v) టింక్చర్ అయోడిన్ ఒక ద్రావణమా? (vi) టింక్చర్ అయోడిన్ ను ఎలా తయారు చేస్తారు? (any related answer also suitable even it contains only second sentence)	Any four points $4 x^{1 / 2}$	2
7.	a) శద్ధ పదార్థం: ఏదైనా పదార్థంలో ఒక్క అణు ఘటకం మాత్రమే ఉంటే అది శుద్ధ పదార్థం. (or) ఒక పదార్థంలో ఏ భాగంలో చూసినా సంఘటనం ఒకటే అయి ఉంటే దానిని శుద్ధ పదార్థం అంటారు.		
	Ex: బంగారం ముక్కలో కణాలన్నీ బంగారం అణువులుగానే ఉంటాయి నీటిలో కేవలం నీటి యొక్క $\left(\mathrm{H}_{2} \mathrm{O}\right)$ అణువులు మాత్రమే ఉంటాయి.	$4 x^{1 / 2}$	2
	b) కొల్లాయిడ్: కాంతిని పరిక్నేపించగలిగి ఉండి కంటికి కనబడని చిన్న కణాలను కలిగి విజాతీయ మిశ్రమాన్ని కొల్లాయిడ్ అంటారు. (కాంజికాభ కణ ద్రావణం) (or) ద్రావణంలో ఉండే కణాల కంటే పెద్దవైన కణాలు మరియు అవలంబనాలలో ఉండే కణాల కంటే చిన్నవైన కణాలను కలిగి ఉన్న మిశ్రమాన్ని కొల్లాయిడ్ అంటారు. ఈ కణాలు కాంతిని పరిక్పేపించగలవు.		
	Ex: పొగ ఒక కొల్లాయిడ్. (ఇందులో గాలిలో ఘన పదార్థ కణాలు ఉంటాయి.). పొగ మంచు ఒక కొల్లాయిడ్. (ఇందులో గాలిలో ద్రవ పదార్థ కణాలు ఉంటాయి.) (any related answer also suitable. One example is sufficient in each case)		
		NAGA MURTHY- 9441786635 Contact at: nagamurthysir@gmail.com Visit at: nagamurthy.weebly.com	

\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{8.} \& \begin{tabular}{l}
మొదటి సగం దూరాన్ని కారు ప్రయాణించిన వడి (U) \(=60 \mathrm{Kmph}\) రెండవ సగం దూరాన్ని కారు ప్రయాణించిన వడి (V) \(=40 \mathrm{Kmph}\) సరాసరి వడి \(\left(\mathrm{V}_{\mathrm{a}}\right)=\frac{2 U V}{U+V}\)
\[
\begin{aligned}
\& =\frac{2 \times 60 \times 40}{60+40} \\
\& =\frac{2 \times 60 \times 40}{100} \\
\& =48 \mathrm{Kmph}
\end{aligned}
\] \\
(Data, formula, substitution, answer - 4 points)
\end{tabular} \& For four points \(4 x^{1 / 2}\) \& 2 \\
\hline \& \begin{tabular}{l}
మొత్తం దూరం = 2d అనుకొనము \\
మొదటి సగం దూరాన్ని ప్రయాణించడానికి పట్టిన కాలం \(=t_{1}\) అనుకొనుము మొదటి సగం దూరాన్ని కారు ప్రయాణించిన వడి \(=60 \mathrm{Kmph}\) \(\mathrm{d}=\) వడి X కాలం \(=60 \mathrm{t}_{1}\) \\
రెండవ సగం దూరాన్ని ప్రయాణించడానికి పట్టిన కాలం \(=t_{2}\) అనుకొనుము రెండవ సగం దూరాన్ని కారు ప్రయాణించిన వడి \(=40 \mathrm{Kmph}\) \(\mathrm{d}=\) వడి X కాలం \(=40 \mathrm{t}_{2}\) \\
ఇపుడు \(60 \mathrm{t}_{1}=40 \mathrm{t}_{2} \rightarrow 3 \mathrm{t}_{1}=2 \mathrm{t}_{2} \rightarrow \frac{3}{2} \mathrm{t}_{1}=\mathrm{t}_{2} \rightarrow \mathrm{t}_{2}=1.5 \mathrm{t}_{1}\) \\
మొత్తం కాలం \(=t_{1}+t_{2}=t_{1}+1.5 t_{1}=2.5 t_{1}\) \\
మొత్తం దూరం \(=2 \mathrm{~d}=2 \times 60 \mathrm{t}_{1}=120 \mathrm{t}_{1}\) \\
సరాసరి వడి \(=\frac{\text { మuత్తం దూరంం }}{\text { మొత్తం కాలం }}=\frac{120 t_{1}}{2.5 t_{1}}=\frac{1200}{25}=48 \mathrm{Kmph}\) (any related answer also suitable)
\end{tabular} \& \(4 \mathrm{x}^{1 / 2}\) \& 2 \\
\hline 9. \& \begin{tabular}{l}
ర్రాడుపై నడిచే వ్యక్తి తన గరిమ నాభి స్థానాన్ని త్రాడు యొక్క మధ్య భాగంలో కేంద్రీకరించుకునేందుకు వీలుగా పొడవాటి కర్రను పట్టుకుంటాడు. కర్రను సరిసేయడం ద్వారా గరిమ నాఖి స్థానాన్ని సర్దుబాటు చేసుకుంటాడు. \\
వంపు గల కర్ర అయుతే మరింత సమర్ధవంతంగా ఉపడూగించవష్చు. \\
(any related two points)
\end{tabular} \& 2x1 \& 2 \\
\hline 10A. \& \begin{tabular}{l}
బంతి ద్రవ్యరాశి (m) \(=10 \mathrm{Kg}\) \\
బంతి యొక్క ఎత్తు (h) \(=10 \mathrm{~m}\) \\
గురుత్వ త్వరణం \((\mathrm{g})=9.8 \mathrm{~m} / \mathrm{s}^{2}\) \\
ఎ) బంతి యొక్క తొలి స్థితి శక్తి (P.E.) \(=\mathrm{mgh}=10 \times 9.8 \times 10=980 \mathrm{~J}\) \\
బి) బంతి భూమిని చేరునపుడు దాని గతిశక్తి \(=980 \mathrm{~J}\) \\
(శక్తి నిత్యత్వ నియమం ప్రకారం, బంతికి మొదట ఉండే స్థితి శక్తి అంతా అది ఘూమిని చేరే సమయా నికి గతి శక్తిగా మార్పు చెందుతుంది.) \\
(any related answer also suitable even they use \(\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}\)) \\
బంతి ద్రవ్యరాశి (m) = 10 Kg \\
బంతి యొక్క ఎత్తు (h) \(=10 \mathrm{~m}\) \\
గురుత్వ త్వరణం \((\mathrm{g})=9.8 \mathrm{~m} / \mathrm{s}^{2}\) \\
ఎ) బంతి యొక్క తొలి స్థితి శక్తి (P.E.) \(=\mathrm{mgh}=10 \times 9.8 \times 10=980 \mathrm{~J}\) \\
బి) బంతి భూమిని చేరునపుడు దాని గతిశక్తి \(=\frac{1}{2} \mathrm{mv}^{2}\) \\
భూమిని చేరేటపుడు వేగం \((\mathrm{v})=\sqrt{2 g h}=\sqrt{2 \times 9.8 \times 10}=\sqrt{196}=14 \mathrm{~m} / \mathrm{s}\)
\[
\text { K.E. }=\frac{1}{2} \mathrm{mv}^{2}=\frac{1}{2}(10)(14)^{2}=5 \times 196=980 \mathrm{~J}
\] \\
(any related answer also suitable even they use \(g=10 \mathrm{~m} / \mathrm{s}^{2}\))
\end{tabular} \& \& 4

4

\hline \multicolumn{4}{|c|}{NAGA MURTHY-9441786635 Contactat : nagamurthysir@gmail.com Visitat: nagamurthy.weebly.com}

\hline
\end{tabular}

	(OR)		
10B.	ఎ) (1) పారిశ్రామిక రంగంలో అతిధ్వనుల అనువర్తనాలు: (i) లోహాలు, గాజు వంటి వస్తువులకు రంధ్రాలు చేయుటకు (ii) లోహాలు, గాజు వంటి వస్తువులను కోరిన ఆకృతికి మార్చుటకు (iii) బట్టలు లేదా వస్తువులను శ్ర పరచుటకు లేదా మురికి తొలగించుటకు (iv) వివిధ యంత్రాలు, పరికరాలలో లోపాలు లేదా పగుళ్ళను గుర్తించుటకు (2) వైద్య రంగంలో అతిధ్వనుల అనువర్తనాలు: (i) శరీర అంతర్భాగాలను చిత్రీకరించుటకు (ii) ఇకోకార్టియోగ్రఫీ పద్దతిలో గుండె కు సంబంథించిన చిత్రాలను ఏర్పరచుటకు (iii) శరీరంలోని పిత్తాశయం, గర్భాశయం వంటి భాగాలను గుర్తించుటకు లేదా అల్టా సోనోగ్రఫీ పద్దతిలో ఉపయోగిస్తారు. (iv) పదార్థాల ఎమల్సీకరణంలో (v) కంటి శుక్లాలను తొలగించే శస్ర చికిత్సలలో (vi) పదార్థాల ఎమల్సీకరణంలో (any related answer also suitable) ప్రతి ధ్వనికి పట్టిన కాలం $(\mathrm{t})=6 \mathrm{~s}$ సముద్రపు నీటిలో ధ్వని వేగం (v) $=1500 \mathrm{~m} / \mathrm{s}$ సముద్రం లోతు = d మీటర్లు అనుకొనుము ధ్వని ప్రయాణించిన దూరం $=2 \mathrm{~d}=$ వేగం \times కాలం $=1500 \times 6=9000 \mathrm{~m} / \mathrm{s}$ సముద్రపు లోతు (d) $=4500 \mathrm{~m}$ (any related answer also suitable)	Any 2 uses $2 \times 1 / 2$ Any 2 uses $2 \times 1 / 2$ $1 / 2$ 1 $1 / 2$	4
11A.	కిరోసిన్ యొక్క విశిష్ట సాంద్రతను కనుగొనుట: (i) ఒక చిన్న బీకరు లేదా కొలకుప్పె ద్రవ్యరాశిని కనుగొనాలి. $\left(\mathrm{m}_{1}\right)$ (ii) 20 ml ల నీటిని కుప్పెలో నింపి ద్రవ్యరాశిని కనుగొనాలి. $\left(\mathrm{m}_{2}\right)$ పై ద్రవ్యరాశుల తేడా 20 ml ల నీటి ద్రవ్యరాశి అవుతుంది. $\left(m_{1}-m_{2}\right)$ (iii) 20 ml ల కిరోసననను కుప్పెలో నింపి ద్రవ్యరాశిని కనుగొనాలి. $\left(\mathrm{m}_{3}\right)$ దీని నుండ ఖాళీ కుప్పె ద్రవ్యరాశిని తీసివేసిన 20 ml ల కిరోసిన్ ద్రవ్యరాశి వస్తుంది. $\left(m_{3}-m_{1}\right)$ (iv) కిరోసొన్ సాపేక్ష సాంద్రత $=\frac{\text { కిరోసిన్ ద్రవ్యరాశి }}{\text { అంతే ఘన పరిమణం గల నీట ద్రవ్యరాశి }}$ ఈ విధంగా కిరోసిన్ సాపేక్ష సాంద్రతను కనుగొంటారు. (any related answer also suitable even they contain no symbols like \mathbf{m}_{1})	4 x 1	4
	(OR)		
11B.	న్యూటన్ మూడవ గమన నియమాన్ని నిరూపించుట: (i) ఒక టెస్ట్ ట్యూబ్లో కొంత నీరు పోసి, రబ్బరు బిరడాను అమర్చాలి. (ii) టెస్ట్ ట్యూబ్ రెండు కొనలకు దారాన్ని కట్టి, ఒక స్టాండుకు వ్రేలాడదీయాలి.. (ii) టెస్ట్ ట్యూబ్ను బర్నర్ తో లేదా క్రొవ్వొత్తితో వేడి చేయాలి. (iv) ఏర్పడిన నీటి ఆవిరి కొంత బలంతో రబ్బరు బిరడాను బయటకు నెట్టివేయును. ప్రతి చర్య ఫలితంగా టెస్ట్ ట్యూబ్ అంతే బలంతో బిరడా చలించిన దిశకు వ్యతిరేక దిశలో కదులును. (any related answer also suitable . Diagram is not necessary.) (Balloon rocket experiment or any other activity should treat as suitable)	4 x 1	4
NAGA MURTHY-9441786635 Contact at: nagamurthysir@gmail.com Visit at: nagamurthy.weebly.com			

\begin{tabular}{|c|c|c|c|}
\hline 12A. \& \begin{tabular}{l}
ఎ) పట్టికలో ఇవ్వబడిన సమాచారంలో ఆక్సిజన్ పరమాణు భారం 2 గా ఇవ్వబడినది. ఈ సమాచారం (ఎ) లేదా (బి) ప్రశ్నల సమాధానాలకు అనుకూలంగా ఉండదు. \\
బి) ఒక అణువు అణుభారం 18 గా ఇవ్వవలసి ఉండగా 16 అని ఇవ్వబడినది. ఈ ప్రశ్న కు సమాధానం సందిగ్ధము. \\
(Allot 4 mark for each student for this question - add mark)
\end{tabular} \& 2 \& 4 \\
\hline \& (OR) \& \& \\
\hline 12B. \& \begin{tabular}{l}
ఎ) హైడోజన్ వాయువుకు వ్యాపన రేటు అధికం. ఎందుకనగా అది వాయువు. \\
బి) నీరు (లేదా) ఇనుప కడ్డీ (లేదా) సీసపు గుండు (లేదా) \\
స) తేనె, నీరు \\
డ) చెక్క దిమ్మె, సీసపు గుండు, ఇనుప కడ్డీ \\
(any matter that gives brief description in 4 points) \\
(నీరు 100 , ఇనుము 2856, సీసం 1750 డిగ్రీల సెల్సియస్ వద్ద ఇగురుతాయి)
\end{tabular} \& \(4 \times 1\) \& 4 \\
\hline \multirow[t]{2}{*}{13A.} \& \begin{tabular}{l}
 \\
(any diagram related is sufficient. Meaningful diagram is enough.) (Time readings are not important as the data is insufficient in the question. So The student can draw a model graph.) \\
(Neatness is not necessary , rough diagram is sufficient.)
\end{tabular} \& 3

1 \& 4

\hline \& (OR) \& \&

\hline 13B. \& | a) పరమాణు నిరాణం: |
| :--- |
| (any diagram related is sufficient. Meaningful diagram is enough.) |
| (Neatness is not important as this question is not given to test artists skill.) | \& 3 \& \multirow[t]{2}{*}{4}

\hline \& | b) ప్రోటాన్ లేదా న్యూట్రాన్ ద్రవ్యరాశి, ఎలక్ట్రాన్ ద్రవ్యరాశికి షమారు 2000 రెట్లు ఉంటుంది. కనుక పరమాణు భారం లెక్కించేటపుడు ఎలక్ట్రాన్ భారాన్ని పరిగణనలోకి తీసుకోము. |
| :--- |
| (any related answer also suitable) | \& 1 \&

\hline
\end{tabular}

PART - B

S. No	Ans.						
14	D	19	D	24	D	29	B
15	A	20	C	25	D	30	$*$
16	$*$	21	B	26	B	31	$*$
17	B	22	C	27	A	32	A
18	D	23	A	28	C	33	C

Note: * means allot full marks. Each question carries $1 / 2$ mark.

